Skip to main content

A Quantitative Approach to Understanding Reactivity in Organometallic Chemistry

  • Chapter
  • First Online:
New Directions in the Modeling of Organometallic Reactions

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 67))

  • 796 Accesses

Abstract

This chapter presents the combination of the activation strain model (ASM) of reactivity and the energy decomposition analysis (EDA) methods as an alternative approach to gain quantitative insight into the reactivity trends in organometallic chemistry. Besides a brief presentation of the basics of these quantum chemical methods, representative recent applications of this approach to fundamental transition metal (TM)-mediated reactions are discussed. The selected transformations span from typical oxidative addition or β-elimination processes to more intricate gold (I)-mediated hydroarylation or hydroamination reactions, therefore covering a good number of different processes in organometallic chemistry. The contents of this chapter show not only the good performance of this computational methodology to understand the physical factors controlling the reactivity in organometallic chemistry but also its usefulness toward the rational design of more efficient transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ASM:

Activation strain model

DFT:

Density functional theory

EDA:

Energy decomposition analysis

NOCV:

Natural orbitals for chemical valence

References

  1. Fernández I, Bickelhaupt FM (2014) The activation strain model and molecular orbital theory: understanding and designing chemical reactions. Chem Soc Rev 43:4953–4967

    Google Scholar 

  2. Wolters LP, Bickelhaupt FM (2015) The activation strain model and molecular orbital theory. WIREs Comput Mol Sci 5:324–343

    CAS  Google Scholar 

  3. Bickelhaupt FM, Houk KN (2017) Analyzing reaction rates with the distortion/interaction-activation strain model. Angew Chem Int Ed 56:10070–10086

    CAS  Google Scholar 

  4. Fernández I (2014) Understanding trends in reaction barriers. In: Pignataro B (ed) Discovering the future of molecular sciences. Wiley, Weinheim, pp 165–187

    Google Scholar 

  5. Bickelhaupt FM, Baerends EJ (2000) Kohn-Sham density functional theory: predicting and understanding chemistry. In: Lopkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol 15. Wiley, New York, pp 1–86

    Google Scholar 

  6. von Hopffgarten M, Frenking G (2012) Energy decomposition analysis. WIREs Comput Mol Sci 2:43–62

    Google Scholar 

  7. Frenking G, Bickelhaupt FM (2014) The EDA perspective of chemical bonding. In: Frenking G, Shaik S (eds) The chemical bond: fundamental aspects of chemical bonding. Wiley, Weinheim, pp 121–157

    Google Scholar 

  8. Fernández I (2018) Energy decomposition analysis and related methods. In: Tantillo D (ed) Applied theoretical organic chemistry. World Scientific, Hackensack, pp 191–226

    Google Scholar 

  9. Mitoraj M, Michalak A (2007) Natural orbitals for chemical valence as descriptors of chemical bonding in transition metal complexes. J Mol Model 13:347–355

    CAS  Google Scholar 

  10. Mitoraj MP, Michalak A, Ziegler T (2009) A combined charge and energy decomposition scheme for bond analysis. J Chem Theory Comput 5:962–975

    CAS  Google Scholar 

  11. Bleeke JR (2001) Metallabenzenes. Chem Rev 101:1205–1228

    CAS  Google Scholar 

  12. Landorf CW, Haley MM (2006) Recent advances in metallabenzene chemistry. Angew Chem Int Ed 45:3914–3936

    CAS  Google Scholar 

  13. Dalebrook AF, Wright LJ (2012) Anthony FH, Mark JF (eds) Advances in organometallic chemistry, vol 60. Academic Press, New York, pp 93–177

    Google Scholar 

  14. Fernández I, Frenking G, Merino G (2015) Aromaticity of metallabenzenes and related compounds. Chem Soc Rev 44:6452–6463

    Google Scholar 

  15. Elliott GP, Roper WR, Waters JM (1982) Metallacyclohexatrienes or ‘metallabenzenes’. Synthesis of osmabenzene derivatives and X-ray crystal structure of [Os(CSCHCHCHCH)(CO)(PPh3)2]. J Chem Soc Chem Commun:811–813

    Google Scholar 

  16. Frogley BJ, Wright LJ (2014) Fused-ring metallabenzenes. Coord Chem Rev 270–271:151–166

    Google Scholar 

  17. Han F, Wang T, Li J, Zhang H, Xia H (2014) m-Metallaphenol: synthesis and reactivity studies. Chem Eur J 20:4363–4372

    CAS  Google Scholar 

  18. Zhuo Q, Chen Z, Yang Y, Zhou X, Han F, Zhu J, Zhang H, Xia H (2016) Synthesis of aromatic ruthenabenzothiophenes via C–H activation of thiophenes. Dalton Trans 45:913–917

    CAS  Google Scholar 

  19. Zhuo Q, Zhou X, Kang H, Chen Z, Yang Y, Han F, Zhang H, Xia H (2016) Synthesis of fused metallaaromatics via intramolecular C–H activation of thiophenes. Organometallics 35:1497–1504

    CAS  Google Scholar 

  20. Frogley BJ, Wright LJ (2016) A metallaanthracene and derived metallaanthraquinone. Angew Chem Int Ed 56:143–147

    Google Scholar 

  21. Atherton JCC, Jones S (2013) Diels–Alder reactions of anthracene, 9-substituted anthracenes and 9,10-disubstituted anthracenes. Tetrahedron 59:9039–9057

    Google Scholar 

  22. García-Rodeja Y, Fernández I (2017) Influence of the transition-metal fragment on the reactivity of metallaanthracenes. Chem Eur J 23:6634–6642

    Google Scholar 

  23. García-Melchor M, Braga AAC, Lledós A, Ujaque G, Maseras F (2013) Computational perspective on Pd-catalyzed C–C cross-coupling reaction mechanisms. Acc Chem Res 46:2626–2634, and references therein

    Google Scholar 

  24. Besora M, Gourlaouen C, Yates B, Maseras F (2011) Phosphine and solvent effects on oxidative addition of CH3Br to Pd(PR3) and Pd(PR3)2 complexes. Dalton Trans 40:11089–11094

    CAS  Google Scholar 

  25. Besora M, Maseras F (2019) The diverse mechanisms for the oxidative addition of C–Br bonds to Pd(PR3) and Pd(PR3)2 complexes. Dalton Trans 48:16242–16248

    CAS  Google Scholar 

  26. de Jong GT, Bickelhaupt FM (2007) Catalytic carbon−halogen bond activation: trends in reactivity, selectivity, and solvation. J Chem Theory Comput 3:514–529

    Google Scholar 

  27. de Jong GT, Bickelhaupt FM (2007) Transition-state energy and position along the reaction coordinate in an extended activation strain model. ChemPhysChem 8:1170–1181

    Google Scholar 

  28. Vermeeren P, Sun X, Bickelhaupt FM (2018) Arylic C–X bond activation by palladium catalysts: activation strain analyses of reactivity trends. Sci Rep 8:10729

    Google Scholar 

  29. Sun X, Rocha MVJ, Hamlin TA, Poater J, Bickelhaupt FM (2019) Understanding the differences between iron and palladium in cross-coupling. Phys Chem Chem Phys 21:9651–9664

    CAS  Google Scholar 

  30. Joost M, Gualco P, Coppel Y, Miqueu K, Kefalidis CE, Maron L, Amgoune A, Bourissou D (2014) Direct evidence for intermolecular oxidative addition of σ(Si–Si) bonds to gold. Angew Chem Int Ed 53:747–751, and references therein

    CAS  Google Scholar 

  31. Livendahl M, Goehry C, Maseras F, Echavarren AM (2014) Rationale for the sluggish oxidative addition of aryl halides to Au(I). Chem Commun 50:1533–1536

    CAS  Google Scholar 

  32. Fernández I, Wolters LP, Bickelhaupt FM (2014) Controlling the oxidative addition of aryl halides to Au(I). J Comput Chem 35:2140–2145

    Google Scholar 

  33. Joost M, Zeineddine A, Estévez L, Mallet-Ladeira S, Miqueu K, Amgoune A, Bourissou D (2014) Facile oxidative addition of aryl iodides to gold(I) by ligand design: bending turns on reactivity. J Am Chem Soc 136:14654–14657

    CAS  Google Scholar 

  34. Alcarazo M (2014) α-Cationic phosphines: synthesis and applications. Chem Eur J 20:7868–7877

    CAS  Google Scholar 

  35. Alcarazo M (2016) Synthesis, structure, and applications of α-cationic phosphines. Acc Chem Res 49:1797–1805

    CAS  Google Scholar 

  36. Petuškova J, Bruns H, Alcarazo M (2011) Cyclopropenylylidene-stabilized diaryl and dialkyl phosphenium cations: applications in homogeneous gold catalysis. Angew Chem Int Ed 50:3799–3802

    Google Scholar 

  37. Petuškova J, Patil M, Holle S, Lehmann CW, Thiel W, Alcarazo M (2011) Synthesis, structure, and reactivity of carbene-stabilized phosphorus(III)-centered trications [L3P]3+. J Am Chem Soc 133:20758–20760

    Google Scholar 

  38. García-Rodeja Y, Fernández I (2017) Understanding the effect of α-cationic phosphines and group 15 analogues on π-acid catalysis. Organometallics 36:460–466

    Google Scholar 

  39. Müller TE, Hultzsch KC, Yus M, Foubelo F, Tada M (2008) Hydroamination: direct addition of amines to alkenes and alkynes. Chem Rev 108:3795–3892

    Google Scholar 

  40. Reznichenko AL, Hultzsch KC (2015) Hydroamination of alkenes. Org React 88:1–554

    Google Scholar 

  41. Zhang J, Yang CG, He C (2016) Gold(I)-catalyzed intra- and intermolecular hydroamination of unactivated olefins. J Am Chem Soc 128:1798–1799

    Google Scholar 

  42. Giner X, Nájera C (2008) (Triphenyl phosphite)gold(I)-catalyzed intermolecular hydroamination of alkenes and 1,3-dienes. Org Lett 10:2919–2922

    CAS  Google Scholar 

  43. Zhang X, Corma A (2008) Efficient addition of alcohols, amines and phenol to unactivated alkenes by Au(III) or Pd(II) stabilized by CuCl2. Dalton Trans 3:397–403

    Google Scholar 

  44. Timmerman JC, Laulhé S, Widenhoefer RA (2017) Gold(I)-catalyzed intramolecular hydroamination of unactivated terminal and internal alkenes with 2-pyridones. Org Lett 19:1466–1469

    CAS  Google Scholar 

  45. Abadie MA, Trivelli X, Medina F, Duhal M, Kouach M, Linden B, Génin E, Vandewalle M, Capet F, Roussel P, Del Rosal I, Maron L, Agbossou-Niedercorn F, Michon C (2017) Gold(I)-catalysed asymmetric hydroamination of alkenes: a silver- and solvent-dependent enantiodivergent reaction. Chem Eur J 23:10777–10788

    CAS  Google Scholar 

  46. Timmerman JC, Robertson BD, Widenhoefer RA (2015) Gold-catalyzed intermolecular anti-Markovnikov hydroamination of alkylidenecyclopropanes. Angew Chem Int Ed 54:2251–2254

    CAS  Google Scholar 

  47. Zhang Z, Lee SD, Widenhoefer RA (2009) Intermolecular hydroamination of ethylene and 1-alkenes with cyclic ureas catalyzed by achiral and chiral gold(I) complexes. J Am Chem Soc 131:5372–5373

    CAS  Google Scholar 

  48. Couce-Ríos A, Lledós A, Fernández I, Ujaque G (2019) Origin of the anti-Markovnikov hydroamination of alkenes catalyzed by L-Au(I) complexes: coordination mode determines regioselectivity. ACS Catal 9:848–858

    Google Scholar 

  49. Fernández I, Bickelhaupt FM, Cossío FP (2012) Type-I dyotropic reactions: understanding trends in barriers. Chem Eur J 18:12395–12403

    Google Scholar 

  50. Fernández I, Bickelhaupt FM, Cossío FP (2014) Ene-ene-yne reactions: activation strain analysis and the role of aromaticity. Chem Eur J 20:10791–10801

    Google Scholar 

  51. O’Reilly ME, Dutta S, Veige AS (2016) β-Alkyl elimination: fundamental principles and some applications. Chem Rev 116:8105–8145

    Google Scholar 

  52. Stockland RA, Jordan RF (2000) Reaction of vinyl chloride with a prototypical metallocene catalyst: stoichiometric insertion and β-Cl elimination reactions with rac-(EBI)ZrMe+ and catalytic dechlorination/oligomerization to oligopropylene by rac-(EBI)ZrMe2/MAO. J Am Chem Soc 122:6315–6316

    CAS  Google Scholar 

  53. Stockland RA, Foley SR, Jordan RF (2003) Reaction of vinyl chloride with group 4 metal olefin polymerization catalysts. J Am Chem Soc 125:796–809

    CAS  Google Scholar 

  54. Gaynor SG (2003) Vinyl chloride as a chain transfer agent in olefin polymerizations: preparation of highly branched and end functional polyolefins. Macromolecules 36:4692–4698

    CAS  Google Scholar 

  55. Carpenter AE, McNeece AJ, Barnett BR, Estrada AL, Mokhtarzadeh CC, Moore CE, Rheingold AL, Perrin CL, Figueroa JS (2014) Direct observation of β-chloride elimination from an isolable β-chloroalkyl complex of square-planar nickel. J Am Chem Soc 136:15481–15484

    CAS  Google Scholar 

  56. Sosa Carrizo ED, Bickelhaupt FM, Fernández I (2015) Factors controlling β-elimination reactions in group 10 metal complexes. Chem Eur J 21:14362–14369

    CAS  Google Scholar 

Download references

Acknowledgments

Financial support was provided by the Spanish Ministerio de Economía y Competitividad (MINECO) and FEDER (Grants CTQ2016-78205-P and CTQ2016-81797-REDC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Israel Fernández .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fernández, I. (2020). A Quantitative Approach to Understanding Reactivity in Organometallic Chemistry. In: Lledós, A., Ujaque, G. (eds) New Directions in the Modeling of Organometallic Reactions. Topics in Organometallic Chemistry, vol 67. Springer, Cham. https://doi.org/10.1007/3418_2020_43

Download citation

Publish with us

Policies and ethics