Skip to main content

Gold Nanoparticles for Oxidation Reactions: Critical Role of Supports and Au Particle Size

  • Chapter
  • First Online:
Nanoparticles in Catalysis

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 66))

Abstract

Supported gold nanoparticles (Au NPs) exhibit unique catalytic properties for the oxidation of organic compounds. The catalytic activities and the selectivities of the supported Au catalysts largely depend on the kind of support and the particle size of Au. For oxidation of alcohols to aldehydes and ketones, the reducibility of metal oxide (MOx) supports plays a prominent role, while the basicity of the supports or the size of Au particles are more important factors for non-reducible MOx, non-oxides, and other supports. The size effect is more pronounced for dehydrogenation than aerobic oxidation because dehydrogenation takes place mainly on the low-coordinated edge and corner Au atoms. Oxidation of alkenes to epoxides using O2 as a sole oxidant has been achieved by supported Au clusters having a diameter of 2 nm or less. For oxidation of cyclohexane using O2 as a sole oxidant, the presence of Brønsted acid sites contributes to the production of K/A oil. The size of Au particles also largely affects the reaction rate and product selectivity; sub-nanometer Au clusters exhibited significantly higher catalytic activity and K/A oil selectivity than Au NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haruta M, Kobayashi T, Sano H, Yamada N (1987) Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C. Chem Lett 16:405–408. https://doi.org/10.1246/cl.1987.405

    Article  Google Scholar 

  2. Takei T, Akita T, Nakamura I, Fujitani T, Okumura M, Okazaki K, Huang J, Ishida T, Haruta M (2012) Heterogeneous catalysis by gold. Adv Catal 55:1–126. https://doi.org/10.1016/B978-0-12-385516-9.00001-6

    Article  CAS  Google Scholar 

  3. Okumura M, Fujitani T, Huang J, Ishida T (2015) A career in catalysis: Masatake Haruta. ACS Catal 5:4699–4707. https://doi.org/10.1021/acscatal.5b01122

    Article  CAS  Google Scholar 

  4. Ishida T, Koga H, Okumura M, Haruta M (2016) Advances in gold catalysis and understanding the catalytic mechanism. Chem Rec 16:2278–2293. https://doi.org/10.1002/tcr.201600046

    Article  CAS  PubMed  Google Scholar 

  5. Haruta M, Yamada N, Kobayashi T, Iijima S (1989) Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J Catal 115:301–309. https://doi.org/10.1016/0021-9517(89)90034-1

    Article  CAS  Google Scholar 

  6. Hayashi T, Tanaka K, Haruta M (1998) Selective vapor-phase epoxidation of propylene over Au/TiO2 catalysts in the presence of oxygen and hydrogen. J Catal 178:566–575. https://doi.org/10.1006/jcat.1998.2157

    Article  CAS  Google Scholar 

  7. Huang J, Akita T, Faye J, Fujitani T, Takei T, Haruta M (2009) Propene epoxidation with dioxygen catalyzed by gold clusters. Angew Chem Int Ed Engl 48:7862–7866. https://doi.org/10.1002/anie.200903011

    Article  CAS  PubMed  Google Scholar 

  8. Hammer B, Norskov JK (1995) Why gold is the noblest of all the metals. Nature 376:238–240. https://doi.org/10.1038/376238a0

    Article  CAS  Google Scholar 

  9. Fujitani T, Nakamura I, Haruta M (2014) Role of water in CO oxidation on gold catalysts. Catal Lett 144:1475–1486. https://doi.org/10.1007/s10562-014-1325-2

    Article  CAS  Google Scholar 

  10. Saavedra J, Doan HA, Pursell CJ, Grabow LC, Chandler BD (2014) The critical role of water at the gold-titania interface in catalytic CO oxidation. Science 345:1599–1602. https://doi.org/10.1126/science.1256018

    Article  CAS  PubMed  Google Scholar 

  11. Prati L, Rossi M (1998) Gold on carbon as a new catalyst for selective liquid phase oxidation of diols. J Catal 176:552–560. https://doi.org/10.1006/jcat.1998.2078

    Article  CAS  Google Scholar 

  12. Liu L, Corma A (2018) Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem Rev 118:4981–5079. https://doi.org/10.1021/acs.chemrev.7b00776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sharma AS, Kaur H, Shah D (2016) Selective oxidation of alcohols by supported gold nanoparticles: recent advances. RSC Adv 6:28688–28727. https://doi.org/10.1039/c5ra25646a

    Article  CAS  Google Scholar 

  14. Castro PR, Garcia AS, de Abreu WC, de Sousa AA, de Moura VR, Costa CS, de Moura EM (2018) Aerobic oxidation of benzyl alcohol on a strontium-based gold material: remarkable intrinsic basicity and reusable catalyst. Catalysts 8:83. https://doi.org/10.3390/catal8020083

    Article  CAS  Google Scholar 

  15. Hui Y, Zhang S, Wang W (2019) Recent progress in catalytic oxidative transformations of alcohols by supported gold nanoparticles. Adv Synth Catal 361(10):2215–2235. https://doi.org/10.1002/adsc.201801595

    Article  CAS  Google Scholar 

  16. Bianchi C, Porta F, Prati L, Rossi M (2000) Selective liquid phase oxidation using gold catalysts. Top Catal 13:231–236. https://doi.org/10.1023/A:1009065812889

    Article  CAS  Google Scholar 

  17. Abad A, Almela C, Corma A, García H (2006) Efficient chemoselective alcohol oxidation using oxygen as oxidant. Superior performance of gold over palladium catalysts. Tetrahedron 62:6666–6672. https://doi.org/10.1016/j.tet.2006.01.118

    Article  CAS  Google Scholar 

  18. Abad A, Almela C, Corma A, García H (2006) Unique gold chemoselectivity for the aerobic oxidation of allylic alcohols. Chem Commun 30:3178–3180. https://doi.org/10.1039/b606257a

    Article  CAS  Google Scholar 

  19. Milone C, Ingoglia R, Neri G, Pistone A, Galvagno S (2001) Gold catalysts for the liquid phase oxidation of o-hydroxybenzyl alcohol. Appl Catal A Gen 211:251–257. https://doi.org/10.1016/S0926-860X(00)00875-9

    Article  CAS  Google Scholar 

  20. Huang J, Dai WL, Fan K (2008) Support effect of new Au/FeOx catalysts in the oxidative dehydrogenation of α,ω-diols to lactones. J Phys Chem C 112:16110–16117. https://doi.org/10.1021/jp8043913

    Article  CAS  Google Scholar 

  21. Huang J, Dai WL, Fan K (2009) Remarkable support crystal phase effect in Au/FeOx catalyzed oxidation of 1,4-butanediol to γ-butyrolactone. J Catal 266:228–235. https://doi.org/10.1016/j.jcat.2009.06.011

    Article  CAS  Google Scholar 

  22. Wang LC, Liu YM, Chen M, Cao Y, He HY, Fan KN (2008) MnO2 nanorod supported gold nanoparticles with enhanced activity for solvent-free aerobic alcohol oxidation. J Phys Chem C 112:6981–6987. https://doi.org/10.1021/jp711333t

    Article  CAS  Google Scholar 

  23. Wang LC, He L, Liu Q, Liu YM, Chen M, Cao Y, He HY, Fan KN (2008) Solvent-free selective oxidation of alcohols by molecular oxygen over gold nanoparticles supported on β-MnO2 nanorods. Appl Catal A Gen 344:150–157. https://doi.org/10.1016/j.apcata.2008.04.013

    Article  CAS  Google Scholar 

  24. Alhumaimess M, Lin Z, He Q, Lu L, Dimitratos N, Dummer NF, Conte M, Taylor SH, Bartley JK, Kiely CJ, Hutchings GJ (2014) Oxidation of benzyl alcohol and carbon monoxide using gold nanoparticles supported on MnO2 nanowire microspheres. Chem Eur J 20:1701–1710. https://doi.org/10.1002/chem.201303355

    Article  CAS  PubMed  Google Scholar 

  25. Wang H, Fan W, He Y, Wang J, Kondo JN, Tatsumi T (2013) Selective oxidation of alcohols to aldehydes/ketones over copper oxide-supported gold catalysts. J Catal 299:10–19. https://doi.org/10.1016/j.jcat.2012.11.018

    Article  CAS  Google Scholar 

  26. Abad A, Concepción P, Corma A, García H (2005) A collaborative effect between gold and a support induces the selective oxidation of alcohols. Angew Chem Int Ed Engl 44:4066–4069. https://doi.org/10.1002/anie.200500382

    Article  CAS  PubMed  Google Scholar 

  27. Sudarsanam P, Mallesham B, Durgasri DN, Reddy BM (2014) Physicochemical and catalytic properties of nanosized Au/CeO2 catalysts for eco-friendly oxidation of benzyl alcohol. J Ind Eng Chem 20:3115–3121. https://doi.org/10.1016/j.jiec.2013.11.053

    Article  CAS  Google Scholar 

  28. Wang M, Wang F, Ma J, Li M, Zhang Z, Wang Y, Zhang X, Xu J (2014) Investigations on the crystal plane effect of ceria on gold catalysis in the oxidative dehydrogenation of alcohols and amines in the liquid phase. Chem Commun 50:292–294. https://doi.org/10.1039/c3cc46180g

    Article  CAS  Google Scholar 

  29. Li T, Liu F, Tang Y, Li L, Miao S, Su Y, Zhang J, Huang J, Sun H, Haruta M, Wang A, Qiao B, Li J, Zhang T (2018) Maximizing the number of interfacial sites in single-atom catalysts for the highly selective, solvent-free oxidation of primary alcohols. Angew Chem Int Ed Engl 57:7795–7799. https://doi.org/10.1002/anie.201803272

    Article  CAS  PubMed  Google Scholar 

  30. Dimitratos N, Lopez-Sanchez JA, Morgan D, Carley A, Prati L, Hutchings GJ (2007) Solvent free liquid phase oxidation of benzyl alcohol using Au supported catalysts prepared using a sol immobilization technique. Catal Today 122:317–324. https://doi.org/10.1016/j.cattod.2007.01.002

    Article  CAS  Google Scholar 

  31. Zheng N, Stucky GD (2007) Promoting gold nanocatalysts in solvent-free selective aerobic oxidation of alcohols. Chem Commun 1:3862–3864. https://doi.org/10.1039/b706864f

    Article  CAS  Google Scholar 

  32. Kimmerle B, Grunwaldt JD, Baiker A (2007) Gold catalysed selective oxidation of alcohols in supercritical carbon dioxide. Top Catal 44:285–292. https://doi.org/10.1007/s11244-007-0301-0

    Article  CAS  Google Scholar 

  33. Huang J, Dai WL, Li H, Fan K (2007) Au/TiO2 as high efficient catalyst for the selective oxidative cyclization of 1,4-butanediol to γ-butyrolactone. J Catal 252:69–76. https://doi.org/10.1016/j.jcat.2007.09.011

    Article  CAS  Google Scholar 

  34. Abad A, Corma A, García H (2008) Catalyst parameters determining activity and selectivity of supported gold nanoparticles for the aerobic oxidation of alcohols: the molecular reaction mechanism. Chem Eur J 14:212–222. https://doi.org/10.1002/chem.200701263

    Article  CAS  PubMed  Google Scholar 

  35. Haider P, Kimmerle B, Krumeich F, Kleist W, Grunwaldt JD, Baiker A (2008) Gold-catalyzed aerobic oxidation of benzyl alcohol: effect of gold particle size on activity and selectivity in different solvents. Catal Lett 125:169–176. https://doi.org/10.1007/s10562-008-9567-5

    Article  CAS  Google Scholar 

  36. Yang X, Wang X, Liang C, Su W, Wang C, Feng Z, Li C, Qiu J (2008) Aerobic oxidation of alcohols over Au/TiO2: an insight on the promotion effect of water on the catalytic activity of Au/TiO2. Catal Commun 9:2278–2281. https://doi.org/10.1016/j.catcom.2008.05.021

    Article  CAS  Google Scholar 

  37. Fristrup P, Johansen LB, Christensen CH (2008) Mechanistic investigation of the gold-catalyzed aerobic oxidation of alcohols. Catal Lett 120:184–190. https://doi.org/10.1007/s10562-007-9301-8

    Article  CAS  Google Scholar 

  38. Xu J, Wang Y, Cao Y, He Z, Zhao L, Etim UJ, Bai P, Yan Z, Wu P (2019) What is the effect of Sn and Mo oxides on gold catalysts for selective oxidation of benzyl alcohol? New J Chem 43:2591–2599. https://doi.org/10.1039/C8NJ05642K

    Article  CAS  Google Scholar 

  39. Berndt H, Pitsch I, Evert S, Struve K, Pohl MM, Radnik J, Martin A (2003) Oxygen adsorption on Au/Al2O3 catalysts and relation to the catalytic oxidation of ethylene glycol to glycolic acid. Appl Catal A Gen 244:169–179. https://doi.org/10.1016/S0926-860X(02)00575-6

    Article  CAS  Google Scholar 

  40. Su FZ, Chen M, Wang LC, Huang XS, Liu YM, Cao Y, He HY, Fan KN (2008) Aerobic oxidation of alcohols catalyzed by gold nanoparticles supported on gallia polymorphs. Catal Commun 9:1027–1032. https://doi.org/10.1016/j.catcom.2007.10.010

    Article  CAS  Google Scholar 

  41. Su FZ, Liu YM, Wang LC, Cao Y, He HY, Fan KN (2008) Ga-Al mixed-oxide-supported gold nanoparticles with enhanced activity for aerobic alcohol oxidation. Angew Chem Int Ed Engl 47:334–337. https://doi.org/10.1002/anie.200704370

    Article  CAS  PubMed  Google Scholar 

  42. Huang R, Fu Y, Zeng W, Zhang L, Wang D (2017) The facile approach to fabricate gold nanoparticles and their application on the hydration and dehydrogenation reactions. J Organomet Chem 851:46–51. https://doi.org/10.1016/j.jorganchem.2017.09.016

    Article  CAS  Google Scholar 

  43. Choudhary VR, Dumbre DK (2011) Solvent-free selective oxidation of primary alcohols-to-aldehydes and aldehydes-to-carboxylic acids by molecular oxygen over MgO-supported nano-gold catalyst. Catal Commun 13:82–86. https://doi.org/10.1016/j.catcom.2011.07.001

    Article  CAS  Google Scholar 

  44. Haider P, Baiker A (2007) Gold supported on Cu-Mg-Al-mixed oxides: strong enhancement of activity in aerobic alcohol oxidation by concerted effect of copper and magnesium. J Catal 248:175–187. https://doi.org/10.1016/j.jcat.2007.03.007

    Article  CAS  Google Scholar 

  45. Li S, Li W, Li Y, Fan G, Li F (2017) Structure-dependent base-free aerobic oxidation of benzyl alcohol over high-surface-area Mg-doped ZnAl2O4 spinel supported gold nanoparticles. ChemPlusChem 82:270–279. https://doi.org/10.1002/cplu.201600500

    Article  CAS  PubMed  Google Scholar 

  46. De Moura EM, Garcia MAS, Gonçalves RV, Kiyohara PK, Jardim RF, Rossi LM (2015) Gold nanoparticles supported on magnesium ferrite and magnesium oxide for the selective oxidation of benzyl alcohol. RSC Adv 5:15035–15041. https://doi.org/10.1039/c4ra16159a

    Article  Google Scholar 

  47. Mitsudome T, Noujima A, Mizugaki T, Jitsukawa K, Kaneda K (2009) Efficient aerobic oxidation of alcohols using a hydrotalcite supported gold nanoparticle catalyst. Adv Synth Catal 351:1890–1896. https://doi.org/10.1002/adsc.200900239

    Article  CAS  Google Scholar 

  48. Chen J, Fang W, Zhang Q, Deng W, Wang Y (2014) A comparative study of size effects in the au-catalyzed oxidative and non-oxidative dehydrogenation of benzyl alcohol. Chem Asian J 9:2187–2196. https://doi.org/10.1002/asia.201402238

    Article  CAS  PubMed  Google Scholar 

  49. Liu P, Guan Y, Santen RAV, Li C, Hensen EJM (2011) Aerobic oxidation of alcohols over hydrotalcite-supported gold nanoparticles: the promotional effect of transition metal cations. Chem Commun 47:11540–11542. https://doi.org/10.1039/c1cc15148g

    Article  CAS  Google Scholar 

  50. Li L, Dou L, Zhang H (2014) Layered double hydroxide supported gold nanoclusters by glutathione-capped Au nanoclusters precursor method for highly efficient aerobic oxidation of alcohols. Nanoscale 6:3753–3763. https://doi.org/10.1039/c3nr05604j

    Article  CAS  PubMed  Google Scholar 

  51. Liu M, Fan G, Yu J, Yang L, Li F (2018) Defect-rich Ni-Ti layered double hydroxide as a highly efficient support for Au nanoparticles in base-free and solvent-free selective oxidation of benzyl alcohol. Dalton Trans 47:5226–5235. https://doi.org/10.1039/c7dt04229a

    Article  CAS  PubMed  Google Scholar 

  52. Tang H, Wei J, Liu F, Qiao B, Pan X, Li L, Liu J, Wang J, Zhang T (2016) Strong metal-support interactions between gold nanoparticles and nonoxides. J Am Chem Soc 138:56–59. https://doi.org/10.1021/jacs.5b11306

    Article  CAS  PubMed  Google Scholar 

  53. Haesuwannakij S, Poonsawat T, Noikham M, Somsook E, Yakiyama Y, Dhital RN, Sakurai H (2017) Size-controlled preparation of gold nanoclusters on hydroxyapatite through trans-deposition method. J Nanosci Nanotechnol 17:4649–4657. https://doi.org/10.1166/jnn.2017.13777

    Article  CAS  Google Scholar 

  54. Karimi B, Kabiri Esfahani F (2009) Gold nanoparticles supported on Cs2CO3 as recyclable catalyst system for selective aerobic oxidation of alcohols at room temperature. Chem Commun 37:5555–5557. https://doi.org/10.1039/b908964k

    Article  CAS  Google Scholar 

  55. Ishida T, Nagaoka M, Akita T, Haruta M (2008) Deposition of gold clusters on porous coordination polymers by solid grinding and their catalytic activity in aerobic oxidation of alcohols. Chem Eur J 14:8456–8460. https://doi.org/10.1002/chem.200800980

    Article  CAS  PubMed  Google Scholar 

  56. Liu H, Liu Y, Li Y, Tang Z, Jiang H (2010) Metal-organic framework supported gold nanoparticles as a highly active heterogeneous catalyst for aerobic oxidation of alcohols. J Phys Chem C 114:13362–13369. https://doi.org/10.1021/jp105666f

    Article  CAS  Google Scholar 

  57. Zhu J, Wang PC, Lu M (2014) Selective oxidation of benzyl alcohol under solvent-free condition with gold nanoparticles encapsulated in metal-organic framework. Appl Catal A Gen 477:125–131. https://doi.org/10.1016/j.apcata.2014.03.013

    Article  CAS  Google Scholar 

  58. Luan Y, Qi Y, Gao H, Zheng N, Wang G (2014) Synthesis of an amino-functionalized metal-organic framework at a nanoscale level for gold nanoparticle deposition and catalysis. J Mater Chem A 2:20588–20596. https://doi.org/10.1039/c4ta04311a

    Article  CAS  Google Scholar 

  59. Leus K, Concepcion P, Vandichel M, Meledina M, Grirrane A, Esquivel D, Turner S, Poelman D, Waroquier M, Van Speybroeck V, Van Tendeloo G, García H, Van Der Voort P (2015) Au@UiO-66: a base free oxidation catalyst. RSC Adv 5:22334–22342. https://doi.org/10.1039/c4ra16800c

    Article  CAS  Google Scholar 

  60. Wang JS, Jin FZ, Ma HC, Li XB, Liu MY, Kan JL, Chen GJ, Dong YB (2016) Au@Cu(II)-MOF: highly efficient bifunctional heterogeneous catalyst for successive oxidation-condensation reactions. Inorg Chem 55:6685–6691. https://doi.org/10.1021/acs.inorgchem.6b00925

    Article  CAS  PubMed  Google Scholar 

  61. Mahyari M, Shaabani A, Bide Y (2013) Gold nanoparticles supported on supramolecular ionic liquid grafted graphene: a bifunctional catalyst for the selective aerobic oxidation of alcohols. RSC Adv 3:22509–22517. https://doi.org/10.1039/c3ra44696d

    Article  CAS  Google Scholar 

  62. Zhang P, Qiao ZA, Jiang X, Veith GM, Dai S (2015) Nanoporous ionic organic networks: stabilizing and supporting gold nanoparticles for catalysis. Nano Lett 15:823–828. https://doi.org/10.1021/nl504780j

    Article  CAS  PubMed  Google Scholar 

  63. Ding S, Tian C, Zhu X, Wang H, Wang H, Abney CW, Zhang N, Dai S (2018) Engineering nanoporous organic frameworks to stabilize naked Au clusters: a charge modulation approach. Chem Commun 54:5058–5061. https://doi.org/10.1039/c8cc02966k

    Article  CAS  Google Scholar 

  64. Porta F, Rossi M (2003) Gold nanostructured materials for the selective liquid phase catalytic oxidation. J Mol Catal A Chem 204–205:553–559. https://doi.org/10.1016/S1381-1169(03)00338-8

    Article  CAS  Google Scholar 

  65. Asao N, Hatakeyama N, Menggenbateer, Minato T, Ito E, Hara M, Kim Y, Yamamoto Y, Chen M, Zhang W, Inoue A (2012) Aerobic oxidation of alcohols in the liquid phase with nanoporous gold catalysts. Chem Commun 48:4540–4542. https://doi.org/10.1039/c2cc17245c

    Article  CAS  Google Scholar 

  66. Tsunoyama H, Sakurai H, Negishi Y, Tsukuda T (2005) Size-specific catalytic activity of polymer-stabilized gold nanoclusters for aerobic alcohol oxidation in water. J Am Chem Soc 127:9374. https://doi.org/10.1021/JA052161E

    Article  CAS  PubMed  Google Scholar 

  67. Tsunoyama H, Ichikuni N, Sakurai H, Tsukuda T (2009) Effect of electronic structures of au clusters stabilized by poly(N-vinyl-2-pyrrolidone) on aerobic oxidation catalysis. J Am Chem Soc 131:7086–7093. https://doi.org/10.1021/ja810045y

    Article  CAS  PubMed  Google Scholar 

  68. Tsukuda T, Tsunoyama H, Sakurai H (2011) Aerobic oxidations catalyzed by colloidal nanogold. Chem Asian J 6:736–748. https://doi.org/10.1002/asia.201000611

    Article  CAS  PubMed  Google Scholar 

  69. Li G, Jin R (2013) Atomically precise gold nanoclusters as new model catalysts. Acc Chem Res 46:1749–1758. https://doi.org/10.1021/ar300213z

    Article  CAS  PubMed  Google Scholar 

  70. Adnan RH, Andersson GG, Polson MIJ, Metha GF, Golovko VB (2015) Factors influencing the catalytic oxidation of benzyl alcohol using supported phosphine-capped gold nanoparticles. Catal Sci Technol 5:1323–1333. https://doi.org/10.1039/c4cy01168f

    Article  CAS  Google Scholar 

  71. Lavenn C, Demessence A, Tuel A (2014) Au 25 (SPh- p NH 2) 17 nanoclusters deposited on SBA-15 as catalysts for aerobic benzyl alcohol oxidation. J Catal 322:130–138. https://doi.org/10.1016/j.jcat.2014.12.002

    Article  CAS  Google Scholar 

  72. Zhang B, Fang J, Li J, Lau JJ, Mattia D, Zhong Z, Xie J, Yan N (2016) Soft, oxidative stripping of alkyl thiolate ligands from hydroxyapatite-supported gold nanoclusters for oxidation reactions. Chem Asian J 11:532–539. https://doi.org/10.1002/asia.201501074

    Article  CAS  PubMed  Google Scholar 

  73. Xie S, Tsunoyama H, Kurashige W, Negishi Y, Tsukuda T (2012) Enhancement in aerobic alcohol oxidation catalysis of Au 25 clusters by single Pd atom doping. ACS Catal 2:1519–1523. https://doi.org/10.1021/cs300252g

    Article  CAS  Google Scholar 

  74. Kotolevich Y, Martynyuk O, Martínez-González S, Tiznado H, Pestryakov A, Avalos Borja M, Cortés Corberán V, Bogdanchikova N (2019) Novel route of synthesis of ultra-small Au nanoparticles on SiO2 supports. Fuel 236:589–597. https://doi.org/10.1016/j.fuel.2018.09.050

    Article  CAS  Google Scholar 

  75. Kohantorabi M, Gholami MR (2018) Fabrication of novel ternary Au/CeO2@g-C3N4 nanocomposite: kinetics and mechanism investigation of 4-nitrophenol reduction, and benzyl alcohol oxidation. Appl Phys A Mater Sci Process 124:1–17. https://doi.org/10.1007/s00339-018-1858-0

    Article  CAS  Google Scholar 

  76. Conte M, Miyamura H, Kobayashi S, Chechik V (2009) Spin trapping of Au-H intermediate in the alcohol oxidation by supported and unsupported gold catalysts. J Am Chem Soc 131:7189–7196. https://doi.org/10.1021/ja809883c

    Article  CAS  PubMed  Google Scholar 

  77. Sun KQ, Luo SW, Xu N, Xu BQ (2008) Gold nano-size effect in Au/SiO2 for selective ethanol oxidation in aqueous solution. Catal Lett 124:238–242. https://doi.org/10.1007/s10562-008-9507-4

    Article  CAS  Google Scholar 

  78. Fang W, Chen J, Zhang Q, Deng W, Wang Y (2011) Hydrotalcite-supported gold catalyst for the oxidant-free dehydrogenation of benzyl alcohol: studies on support and gold size effects. Chem Eur J 17:1247–1256. https://doi.org/10.1002/chem.201002469

    Article  CAS  PubMed  Google Scholar 

  79. Ishida T, Kawakita N, Akita T, Haruta M (2009) One-pot N-alkylation of primary amines to secondary amines by gold clusters supported on porous coordination polymers. Gold Bull 42:267–274. https://doi.org/10.1007/BF03214948

    Article  CAS  Google Scholar 

  80. Ishida T, Kawakita N, Akita T, Haruta M (2010) Deposition of gold clusters onto porous coordination polymers by solid grinding. In: Studies in surface science and catalysis. Elsevier, Amsterdam, pp 839–842

    Google Scholar 

  81. Takei T, Akita T, Nakamura I, Fujitani T, Okumura M, Okazaki K, Huang J, Ishida T, Haruta M (2012) Heterogeneous catalysis by gold. In: Advances in catalysis. Academic Press, Cambridge, pp 1–126

    Google Scholar 

  82. Xie X, Long J, Xu J, Chen L, Wang Y, Zhang Z, Wang X (2012) Nitrogen-doped graphene stabilized gold nanoparticles for aerobic selective oxidation of benzylic alcohols. RSC Adv 2:12438. https://doi.org/10.1039/c2ra21291a

    Article  CAS  Google Scholar 

  83. Miyamura H, Matsubara R, Miyazaki Y, Kobayashi S (2007) Aerobic oxidation of alcohols at room temperature and atmospheric conditions catalyzed by reusable gold nanoclusters stabilized by the benzene rings of polystyrene derivatives. Angew Chem Int Ed Engl 46:4151–4154. https://doi.org/10.1002/anie.200700080

    Article  CAS  PubMed  Google Scholar 

  84. Lucchesi C, Inasaki T, Miyamura H, Matsubara R, Kobayashi S (2008) Aerobic oxidation of alcohols under mild conditions catalyzed by novel polymer-incarcerated, carbon-stabilized gold nanoclusters. Adv Synth Catal 350:1996–2000. https://doi.org/10.1002/adsc.200800319

    Article  CAS  Google Scholar 

  85. Ishida T, Okamoto S, Makiyama R, Haruta M (2009) Aerobic oxidation of glucose and 1-phenylethanol over gold nanoparticles directly deposited on ion-exchange resins. Appl Catal A Gen 353:243–248. https://doi.org/10.1016/j.apcata.2008.10.049

    Article  CAS  Google Scholar 

  86. Ahmed OU, Mjalli FS, Al-Wahaibi T, Al-Wahaibi Y, Alnashef IM (2015) Stability of superoxide ion in phosphonium-based ionic liquids. Ind Eng Chem Res 54:2074–2080. https://doi.org/10.1021/ie504893k

    Article  CAS  Google Scholar 

  87. Wang S, Wang J, Zhao Q, Li D, Wang JQ, Cho M, Cho H, Terasaki O, Chen S, Wan Y (2015) Highly active heterogeneous 3 nm gold nanoparticles on mesoporous carbon as catalysts for low-temperature selective oxidation and reduction in water. ACS Catal 5:797–802. https://doi.org/10.1021/cs501896c

    Article  CAS  Google Scholar 

  88. Han J, Liu Y, Li L, Guo R (2009) Poly(o-phenylenediamine) submicrosphere-supported gold nanocatalysts: synthesis, characterization, and application in selective oxidation of benzyl alcohol. Langmuir 25:11054–11060. https://doi.org/10.1021/la901373t

    Article  CAS  PubMed  Google Scholar 

  89. Wang Y, Yan R, Zhang J, Zhang W (2010) Synthesis of efficient and reusable catalyst of size-controlled Au nanoparticles within a porous, chelating and intelligent hydrogel for aerobic alcohol oxidation. J Mol Catal A Chem 317:81–88. https://doi.org/10.1016/j.molcata.2009.10.026

    Article  CAS  Google Scholar 

  90. Yin H, Zhou C, Xu C, Liu P, Xu X, Ding Y (2008) Aerobic oxidation of d-glucose on support-free nanoporous gold. J Phys Chem C 112:9673–9678. https://doi.org/10.1021/jp8019864

    Article  CAS  Google Scholar 

  91. Wittstock A, Neumann B, Schaefer A, Dumbuya K, Kübel C, Biener MM, Zielasek V, Steinrüek HP, Gottfried JM, Biener J, Hamza A, Bäumer M (2009) Nanoporous Au: an unsupported pure gold catalyst? J Phys Chem C 113:5593–5600. https://doi.org/10.1021/jp808185v

    Article  CAS  Google Scholar 

  92. Lackmann A, Bäumer M, Wittstock G, Wittstock A (2018) Independent control over residual silver content of nanoporous gold by galvanodynamically controlled dealloying. Nanoscale 10:17166–17173. https://doi.org/10.1039/c8nr03699c

    Article  CAS  PubMed  Google Scholar 

  93. Lackmann A, Mahr C, Schowalter M, Fitzek L, Weissmüller J, Rosenauer A, Wittstock A (2017) A comparative study of alcohol oxidation over nanoporous gold in gas and liquid phase. J Catal 353:99–106. https://doi.org/10.1016/j.jcat.2017.07.008

    Article  CAS  Google Scholar 

  94. Prati L, Porta F (2005) Oxidation of alcohols and sugars using Au/C catalysts: part 1. Alcohols. Appl Catal A Gen 291:199–203. https://doi.org/10.1016/j.apcata.2004.11.050

    Article  CAS  Google Scholar 

  95. Okumura M, Kitagawa Y, Kawakami T, Haruta M (2008) Theoretical investigation of the hetero-junction effect in PVP-stabilized Au13 clusters. The role of PVP in their catalytic activities. Chem Phys Lett 459:133–136. https://doi.org/10.1016/j.cplett.2008.04.120

    Article  CAS  Google Scholar 

  96. Comotti M, Della Pina C, Matarrese R, Rossi M (2004) The catalytic activity of “naked” gold particles. Angew Chem Int Ed Engl 43:5812–5815. https://doi.org/10.1002/anie.200460446

    Article  CAS  PubMed  Google Scholar 

  97. Sakata K, Koga H, Ishida T, Aimoto J, Tokunaga M, Okumura M (2015) Theoretical investigation for isomerization of allylic alcohols over Au6 cluster. Gold Bull 48:31–37. https://doi.org/10.1007/s13404-015-0157-1

    Article  CAS  Google Scholar 

  98. Corma A, Domine ME (2005) Gold supported on a mesoporous CeO2 matrix as an efficient catalyst in the selective aerobic oxidation of aldehydes in the liquid phase. Chem Commun 32:4042–4044. https://doi.org/10.1039/b506685a

    Article  CAS  Google Scholar 

  99. Biella S, Prati L, Rossi M (2003) Gold catalyzed oxidation of aldehydes in liquid phase. J Mol Catal A Chem 197:207–212. https://doi.org/10.1016/S1381-1169(02)00618-0

    Article  CAS  Google Scholar 

  100. Christensen CH, Jørgensen B, Rass-Hansen J, Egeblad K, Madsen R, Klitgaard SK, Hansen SM, Hansen MR, Andersen HC, Riisager A (2006) Formation of acetic acid by aqueous-phase oxidation of ethanol with air in the presence of a heterogeneous gold catalyst. Angew Chem Int Ed Engl 45:4648–4651. https://doi.org/10.1002/anie.200601180

    Article  CAS  PubMed  Google Scholar 

  101. Jørgensen B, Egholm Christiansen S, Dahl Thomsen ML, Christensen CH (2007) Aerobic oxidation of aqueous ethanol using heterogeneous gold catalysts: efficient routes to acetic acid and ethyl acetate. J Catal 251:332–337. https://doi.org/10.1016/j.jcat.2007.08.004

    Article  CAS  Google Scholar 

  102. Tembe SM, Patrick G, Scurrell MS (2009) Acetic acid production by selective oxidation of ethanol using Au catalysts supported on various metal oxide. Gold Bull 42:321–327. https://doi.org/10.1007/BF03214954

    Article  CAS  Google Scholar 

  103. Takei T, Suenaga J, Ishida T, Haruta M (2015) Ethanol oxidation in water catalyzed by gold nanoparticles supported on NiO doped with Cu. Top Catal 58:295–301. https://doi.org/10.1007/s11244-015-0370-4

    Article  CAS  Google Scholar 

  104. Ishida T, Ogihara Y, Ohashi H, Akita T, Honma T, Oji H, Haruta M (2012) Base-free direct oxidation of 1-octanol to octanoic acid and its octyl ester over supported gold catalysts. ChemSusChem 5:2243–2248. https://doi.org/10.1002/cssc.201200324

    Article  CAS  PubMed  Google Scholar 

  105. Nielsen IS, Taarning E, Egeblad K, Madsen R, Christensen CH (2007) Direct aerobic oxidation of primary alcohols to methyl esters catalyzed by a heterogeneous gold catalyst. Catal Lett 116:35–40. https://doi.org/10.1007/s10562-007-9086-9

    Article  CAS  Google Scholar 

  106. Marsden C, Taarning E, Hansen D, Johansen L, Klitgaard SK, Egeblad K, Christensen CH (2008) Aerobic oxidation of aldehydes under ambient conditions using supported gold nanoparticle catalysts. Green Chem 10:168–170. https://doi.org/10.1039/B712171G

    Article  CAS  Google Scholar 

  107. Taarning E, Nielsen IS, Egeblad K, Madsen R, Christensen CH (2008) Chemicals from renewables: aerobic oxidation of furfural and hydroxymethylfurfural over gold catalysts. ChemSusChem 1:75–78. https://doi.org/10.1002/cssc.200700033

    Article  CAS  PubMed  Google Scholar 

  108. Liu G, Li G, Song H (2009) Direct synthesis of methyl propionate from n-propyl alcohol and methanol using gold catalysts. Catal Lett 128:493–501. https://doi.org/10.1007/s10562-008-9782-0

    Article  CAS  Google Scholar 

  109. Pazhavelikkakath Purushothaman RK, van Haveren J, van Es DS, Melián-Cabrera I, Heeres HJ (2012) The oxidative esterification of glycerol to methyl glycerate in methanol using gold on oxidic supports: an insight in product selectivity. Green Chem 14:2031. https://doi.org/10.1039/c2gc35226e

    Article  CAS  Google Scholar 

  110. Kotionova T, Lee C, Miedziak PJ, Dummer NF, Willock DJ, Carley AF, Morgan DJ, Knight DW, Taylor SH, Hutchings GJ (2012) Oxidative esterification of homologous 1,3-propanediols. Catal Lett 142:1114–1120. https://doi.org/10.1007/s10562-012-0872-7

    Article  CAS  Google Scholar 

  111. Taarning E, Madsen AT, Marchetti JM, Egeblad K, Christensen CH (2008) Oxidation of glycerol and propanediols in methanol over heterogeneous gold catalysts. Green Chem 10:408. https://doi.org/10.1039/b714292g

    Article  CAS  Google Scholar 

  112. Gawande MB, Rathi AK, Tucek J, Safarova K, Bundaleski N, Teodoro OMND, Kvitek L, Varma RS, Zboril R (2014) Magnetic gold nanocatalyst (nanocat-Fe–Au): catalytic applications for the oxidative esterification and hydrogen transfer reactions. Green Chem 16:4137–4143. https://doi.org/10.1039/C4GC00774C

    Article  CAS  Google Scholar 

  113. Rautiainen S, Simakova O, Guo H, Leino AR, Kordás K, Murzin D, Leskelä M, Repo T (2014) Solvent controlled catalysis: synthesis of aldehyde, acid or ester by selective oxidation of benzyl alcohol with gold nanoparticles on alumina. Appl Catal A Gen 485:202–206. https://doi.org/10.1016/j.apcata.2014.08.003

    Article  CAS  Google Scholar 

  114. Chng LL, Yang J, Ying JY (2015) Efficient synthesis of amides and esters from alcohols under aerobic ambient conditions catalyzed by a Au/mesoporous Al2O3 nanocatalyst. ChemSusChem 8:1916–1925. https://doi.org/10.1002/cssc.201403469

    Article  CAS  PubMed  Google Scholar 

  115. Bernini R, Cacchi S, Fabrizi G, Niembro S, Prastaro A, Shafir A, Vallribera A (2009) Perfluoro-tagged gold nanoparticles immobilized on fluorous silica gel: a reusable catalyst for the benign oxidation and oxidative esterification of alcohols. ChemSusChem 2:1036–1040. https://doi.org/10.1002/cssc.200900211

    Article  CAS  PubMed  Google Scholar 

  116. Oliveira RL, Kiyohara PK, Rossi LM (2009) Clean preparation of methyl esters in one-step oxidative esterification of primary alcohols catalyzed by supported gold nanoparticles. Green Chem 11:1366. https://doi.org/10.1039/b902499a

    Article  CAS  Google Scholar 

  117. Hao Y, Chong Y, Li S, Yang H (2012) Controlled synthesis of Au nanoparticles in the nanocages of SBA-16: improved activity and enhanced recyclability for the oxidative esterification of alcohols. J Phys Chem C 116:6512–6519. https://doi.org/10.1021/jp2093252

    Article  CAS  Google Scholar 

  118. Buonerba A, Noschese A, Grassi A (2014) Highly efficient direct aerobic oxidative esterification of cinnamyl alcohol with alkyl alcohols catalysed by gold nanoparticles incarcerated in a nanoporous polymer matrix: a tool for investigating the role of the polymer host. Chem Eur J 20:5478–5486. https://doi.org/10.1002/chem.201303880

    Article  CAS  PubMed  Google Scholar 

  119. Buonerba A, Impemba S, Litta AD, Capacchione C, Milione S, Grassi A (2018) Aerobic oxidation and oxidative esterification of 5-hydroxymethylfurfural by gold nanoparticles supported on nanoporous polymer host matrix. ChemSusChem 11:3139–3149. https://doi.org/10.1002/cssc.201801560

    Article  CAS  PubMed  Google Scholar 

  120. Mondal P, Salam N, Mondal A, Ghosh K, Tuhina K, Islam SM (2015) A highly active recyclable gold-graphene nanocomposite material for oxidative esterification and Suzuki cross-coupling reactions in green pathway. J Colloid Interface Sci 459:97–106. https://doi.org/10.1016/j.jcis.2015.07.072

    Article  CAS  PubMed  Google Scholar 

  121. Gawande MB, Rathi AK, Gawande MB, Datta KKR, Ranc V, Cepe K, Petr M, Varma RS, Kvitek L, Zboril R (2016) Gold nanoparticle-decorated graphene oxide: synthesis and application in oxidation reactions under benign conditions. J Mol Catal A Chem 424:121–127. https://doi.org/10.1016/j.molcata.2016.07.047

    Article  CAS  Google Scholar 

  122. Ning L, Liao S, Liu X, Guo P, Zhang Z, Zhang H, Tong X (2018) A regulatable oxidative valorization of furfural with aliphatic alcohols catalyzed by functionalized metal-organic frameworks-supported Au nanoparticles. J Catal 364:1–13. https://doi.org/10.1016/j.jcat.2018.04.030

    Article  CAS  Google Scholar 

  123. Costa VV, Estrada M, Demidova Y, Prosvirin I, Kriventsov V, Cotta RF, Fuentes S, Simakov A, Gusevskaya EV (2012) Gold nanoparticles supported on magnesium oxide as catalysts for the aerobic oxidation of alcohols under alkali-free conditions. J Catal 292:148–156. https://doi.org/10.1016/j.jcat.2012.05.009

    Article  CAS  Google Scholar 

  124. Wan X, Deng W, Zhang Q, Wang Y (2014) Magnesia-supported gold nanoparticles as efficient catalysts for oxidative esterification of aldehydes or alcohols with methanol to methyl esters. Catal Today 233:147–154. https://doi.org/10.1016/j.cattod.2013.12.012

    Article  CAS  Google Scholar 

  125. Paul B, Khatun R, Sharma SK, Adak S, Singh G, Das D, Siddiqui N, Bhandari S, Joshi V, Sasaki T, Bal R (2019) Fabrication of Au nanoparticles supported on one-dimensional La2O3 nanorods for selective esterification of methacrolein to methyl methacrylate with molecular oxygen. ACS Sustain Chem Eng 7:3982–3994. https://doi.org/10.1021/acssuschemeng.8b05291

    Article  CAS  Google Scholar 

  126. Casanova O, Iborra S, Corma A (2009) Biomass into chemicals: one pot-base free oxidative esterification of 5-hydroxymethyl-2-furfural into 2,5-dimethylfuroate with gold on nanoparticulated ceria. J Catal 265:109–116. https://doi.org/10.1016/j.jcat.2009.04.019

    Article  CAS  Google Scholar 

  127. Wang X, Zhao G, Zou H, Cao Y, Zhang Y, Zhang R, Zhang F, Xian M (2011) The base-free and selective oxidative transformation of 1,3-propanediol into methyl esters by different Au/CeO2 catalysts. Green Chem 13:2690. https://doi.org/10.1039/c1gc15588a

    Article  CAS  Google Scholar 

  128. Manzoli M, Menegazzo F, Signoretto M, Cruciani G, Pinna F (2015) Effects of synthetic parameters on the catalytic performance of Au/CeO2 for furfural oxidative esterification. J Catal 330:465–473. https://doi.org/10.1016/j.jcat.2015.07.030

    Article  CAS  Google Scholar 

  129. Menegazzo F, Manzoli M, di Michele A, Ghedini E, Signoretto M (2018) Supported gold nanoparticles for furfural valorization in the future bio-based industry. Top Catal 61:1877–1887. https://doi.org/10.1007/s11244-018-1003-5

    Article  CAS  Google Scholar 

  130. Suzuki K, Yamaguchi T, Matsushita K, Iitsuka C, Miura J, Akaogi T, Ishida H (2013) Aerobic oxidative esterification of aldehydes with alcohols by gold-nickel oxide nanoparticle catalysts with a core-shell structure. ACS Catal 3:1845–1849. https://doi.org/10.1021/cs4004084

    Article  CAS  Google Scholar 

  131. Signoretto M, Menegazzo F, Contessotto L, Pinna F, Manzoli M, Boccuzzi F (2013) Au/ZrO2: an efficient and reusable catalyst for the oxidative esterification of renewable furfural. Appl Catal B Environ 129:287–293. https://doi.org/10.1016/j.apcatb.2012.09.035

    Article  CAS  Google Scholar 

  132. Pinna F, Olivo A, Trevisan V, Menegazzo F, Signoretto M, Manzoli M, Boccuzzi F (2013) The effects of gold nanosize for the exploitation of furfural by selective oxidation. Catal Today 203:196–201. https://doi.org/10.1016/j.cattod.2012.01.033

    Article  CAS  Google Scholar 

  133. Menegazzo F, Fantinel T, Signoretto M, Pinna F, Manzoli M (2014) On the process for furfural and HMF oxidative esterification over Au/ZrO2. J Catal 319:61–70. https://doi.org/10.1016/j.jcat.2014.07.017

    Article  CAS  Google Scholar 

  134. Menegazzo F, Signoretto M, Pinna F, Manzoli M, Aina V, Cerrato G, Boccuzzi F (2014) Oxidative esterification of renewable furfural on gold-based catalysts: which is the best support? J Catal 309:241–247. https://doi.org/10.1016/j.jcat.2013.10.005

    Article  CAS  Google Scholar 

  135. Menegazzo F, Signoretto M, Marchese D, Pinna F, Manzoli M (2015) Structure-activity relationships of Au/ZrO2 catalysts for 5-hydroxymethylfurfural oxidative esterification: effects of zirconia sulphation on gold dispersion, position and shape. J Catal 326:1–8. https://doi.org/10.1016/j.jcat.2015.03.006

    Article  CAS  Google Scholar 

  136. Ampelli C, Centi G, Genovese C, Papanikolaou G, Pizzi R, Perathoner S, van Putten RJ, Schouten KJP, Gluhoi AC, van der Waal JC (2016) A comparative catalyst evaluation for the selective oxidative esterification of furfural. Top Catal 59:1659–1667. https://doi.org/10.1007/s11244-016-0675-y

    Article  CAS  Google Scholar 

  137. Ampelli C, Barbera K, Centi G, Genovese C, Papanikolaou G, Perathoner S, Schouten KJ, van der Waal JK (2016) On the nature of the active sites in the selective oxidative esterification of furfural on Au/ZrO2 catalysts. Catal Today 278:56–65. https://doi.org/10.1016/j.cattod.2016.04.023

    Article  CAS  Google Scholar 

  138. Su FZ, Ni J, Sun H, Cao Y, He Y, Fan KN (2008) Gold supported on nanocrystalline β-Ga2O3 as a versatile bifunctional catalyst for facile oxidative transformation of alcohols, aldehydes, and acetals into esters. Chem Eur J 14:7131–7135. https://doi.org/10.1002/chem.200800982

    Article  CAS  PubMed  Google Scholar 

  139. Taketoshi A, Ishida T, Murayama T, Honma T, Haruta M (2019) Applied catalysis A, general oxidative esterification of aliphatic aldehydes and alcohols with ethanol over gold nanoparticle catalysts in batch and continuous flow reactors. Appl Catal A Gen 585:117169. https://doi.org/10.1016/j.apcata.2019.117169

    Article  CAS  Google Scholar 

  140. Ke Y, Qin X, Liu C, Yang R, Dong W (2014) Oxidative esterification of ethylene glycol in methanol to form methyl glycolate over supported Au catalysts. Catal Sci Technol 4:3141–3150. https://doi.org/10.1039/C4CY00556B

    Article  CAS  Google Scholar 

  141. Liu P, Li C, Hensen EJM (2012) Efficient tandem synthesis of methyl esters and imines by using versatile hydrotalcite-supported gold nanoparticles. Chem Eur J 18:12122–12129. https://doi.org/10.1002/chem.201202077

    Article  CAS  PubMed  Google Scholar 

  142. Wei H, Li J, Yu J, Zheng J, Su H, Wang X (2015) Gold nanoparticles supported on metal oxides as catalysts for the direct oxidative esterification of alcohols under mild conditions. Inorganica Chim Acta 427:33–40. https://doi.org/10.1016/j.ica.2014.11.024

    Article  CAS  Google Scholar 

  143. Liu X, Ding RS, He L, Liu YM, Cao Y, He HY, Fan KN (2013) C-C cross-coupling of primary and secondary benzylic alcohols using supported gold-based bimetallic catalysts. ChemSusChem 6:604–608. https://doi.org/10.1002/cssc.201200804

    Article  CAS  PubMed  Google Scholar 

  144. Kim S, Bae SW, Lee JS, Park J (2009) Recyclable gold nanoparticle catalyst for the aerobic alcohol oxidation and C-C bond forming reaction between primary alcohols and ketones under ambient conditions. Tetrahedron 65:1461–1466. https://doi.org/10.1016/j.tet.2008.12.005

    Article  CAS  Google Scholar 

  145. Ishida T, Takamura R, Takei T, Akita T, Haruta M (2012) Support effects of metal oxides on gold-catalyzed one-pot N-alkylation of amine with alcohol. Appl Catal A Gen 413–414:261–266. https://doi.org/10.1016/j.apcata.2011.11.017

    Article  CAS  Google Scholar 

  146. Demidova YS, Suslov EV, Simakova IL, Mozhajcev ES, Korchagina DV, Volcho KP, Salakhutdinov NF, Simakov A, Murzin DY (2018) One-pot monoterpene alcohol amination over Au/ZrO2 catalyst: effect of the substrate structure. J Catal 360:127–134. https://doi.org/10.1016/j.jcat.2018.01.020

    Article  CAS  Google Scholar 

  147. Ishida T, Aimoto J, Hamasaki A, Ohashi H, Honma T, Yokoyama T, Sakata K, Okumura M, Tokunaga M (2014) Formation of gold clusters on La-Ni mixed oxides and its catalytic performance for isomerization of allylic alcohols to saturated aldehydes. Chem Lett 43:1368–1370. https://doi.org/10.1246/cl.140369

    Article  CAS  Google Scholar 

  148. Peng Q, Zhang Y, Shi F, Deng Y (2011) Fe2O3-supported nano-gold catalyzed one-pot synthesis of N-alkylated anilines from nitroarenes and alcohols. Chem Commun 47:6476–6478. https://doi.org/10.1039/c1cc11057h

    Article  CAS  Google Scholar 

  149. Qi C, Akita T, Okumura M, Haruta M (2001) Epoxidation of propylene over gold catalysts supported on non-porous silica. Appl Catal A Gen 218:81–89. https://doi.org/10.1016/S0926-860X(01)00621-4

    Article  CAS  Google Scholar 

  150. Huang J, Akita T, Faye J, Fujitani T, Takei T, Haruta M (2009) Propene epoxidation with dioxygen catalyzed by gold clusters. Angew Chem Int Ed 48:7862–7866. https://doi.org/10.1002/anie.200903011

    Article  CAS  Google Scholar 

  151. Turner M, Golovko VB, Vaughan OPH, Abdulkin P, Berenguer-Murcia A, Tikhov MS, Johnson BFG, Lambert RM (2008) Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature 454:981–983. https://doi.org/10.1038/nature07194

    Article  CAS  PubMed  Google Scholar 

  152. Zheng Y, Zhang X, Yao Y, Chen X, Yang Q (2015) Ultra-small Au nanoparticles stabilized by silica hollow nanospheres for styrene oxidation with oxygen. RSC Adv 5:105747–105752. https://doi.org/10.1039/c5ra21997c

    Article  CAS  Google Scholar 

  153. Zhu Y, Qian H, Jin R (2010) An atomic-level strategy for unraveling gold nanocatalysis from the perspective of Aun(SR)m nanoclusters. Chem Eur J 16:11455–11462. https://doi.org/10.1002/chem.201001086

    Article  CAS  PubMed  Google Scholar 

  154. Hughes MD, Xu YJ, Jenkins P, McMorn P, Landon P, Enache DI, Carley AF, Attard GA, Hutchings GJ, King F, Stitt EH, Johnston P, Griffin K, Kiely CJ (2005) Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions. Nature 437:1132–1135. https://doi.org/10.1038/nature04190

    Article  CAS  PubMed  Google Scholar 

  155. Leandro SR, Fernandes CI, Viana AS, Mourato AC, Vaz PD, Nunes CD (2019) Catalytic performance of bulk and colloidal Co/Al layered double hydroxide with Au nanoparticles in aerobic olefin oxidation. Appl Catal A Gen 584:117155. https://doi.org/10.1016/j.apcata.2019.117155

    Article  CAS  Google Scholar 

  156. Cai ZY, Zhu MQ, Chen J, Shen YY, Zhao J, Tang Y, Chen XZ (2010) Solvent-free oxidation of cyclohexene over catalysts Au/OMS-2 and Au/La-OMS-2 with molecular oxygen. Catal Commun 12:197–201. https://doi.org/10.1016/j.catcom.2010.09.014

    Article  CAS  Google Scholar 

  157. Jameel U, Zhu M, Chen X, Chen H, Iqbal N, Tong Z, Timayo SJ (2017) Novel gallium polyoxometalate/nano-gold hybrid material supported on nano-sized silica for mild cyclohexene oxidation using molecular oxygen. Bull Korean Chem Soc 38:614–624. https://doi.org/10.1002/bkcs.11135

    Article  CAS  Google Scholar 

  158. Ovoshchnikov DS, Donoeva BG, Williamson BE, Golovko VB (2014) Tuning the selectivity of a supported gold catalyst in solvent- and radical initiator-free aerobic oxidation of cyclohexene. Catal Sci Technol 4:752–757. https://doi.org/10.1039/C3CY01011B

    Article  CAS  Google Scholar 

  159. Donoeva BG, Ovoshchnikov DS, Golovko VB (2013) Establishing a Au nanoparticle size effect in the oxidation of cyclohexene using gradually changing Au catalysts. ACS Catal 3:2986–2991. https://doi.org/10.1021/cs400701j

    Article  CAS  Google Scholar 

  160. Dias Ribeiro de Sousa Martins LM, Carabineiro SAC, Wang J, Rocha BGM, Maldonado-Hódar FJ, Latourrette de Oliveira Pombeiro AJ (2017) Supported gold nanoparticles as reusable catalysts for oxidation reactions of industrial significance. ChemCatChem 9:1211–1221. https://doi.org/10.1002/cctc.201601442

    Article  CAS  Google Scholar 

  161. Zhang B, Kaziz S, Li H, Hevia MG, Wodka D, Mazet C, Bürgi T, Barrabés N (2015) Modulation of active sites in supported Au38(SC2H4Ph)24 cluster catalysts: effect of atmosphere and support material. J Phys Chem C 119:11193–11199. https://doi.org/10.1021/jp512022v

    Article  CAS  Google Scholar 

  162. Liu Y, Tsunoyama H, Akita T, Xie S, Tsukuda T (2011) Aerobic oxidation of cyclohexane catalyzed by size-controlled au clusters on hydroxyapatite: size effect in the sub-2 nm regime. ACS Catal 1:2–6. https://doi.org/10.1021/cs100043j

    Article  CAS  Google Scholar 

  163. Xu LX, He CH, Zhu MQ, Fang S (2007) A highly active Au/Al2O3 catalyst for cyclohexane oxidation using molecular oxygen. Catal Lett 114:202–205. https://doi.org/10.1007/s10562-007-9058-0

    Article  CAS  Google Scholar 

  164. Lu GM, Zhao R, Qian G, Qi YX, Wang XL, Suo JS (2004) A highly efficient catalyst Au/MCM-41 for selective oxidation cyclohexane using oxygen. Catal Lett 97:115–118. https://doi.org/10.1023/B:CATL.0000038571.97121.b7

    Article  Google Scholar 

  165. Zhao R, Ji D, Lv G, Qian G, Yan L, Wang X, Suo J (2004) A highly efficient oxidation of cyclohexane over Au/ZSM-5 molecular sieve catalyst with oxygen as oxidant. Chem Commun 7:904–905. https://doi.org/10.1039/B315098D

    Article  Google Scholar 

  166. Saxena S, Singh R, Pala RGS, Sivakumar S (2016) Sinter-resistant gold nanoparticles encapsulated by zeolite nanoshell for oxidation of cyclohexane. RSC Adv 6:8015–8020. https://doi.org/10.1039/c5ra20734g

    Article  CAS  Google Scholar 

  167. Liu L, Arenal R, Meira DM, Corma A (2019) Generation of gold nanoclusters encapsulated in an MCM-22 zeolite for the aerobic oxidation of cyclohexane. Chem Commun 55:1607–1610. https://doi.org/10.1039/c8cc07185c

    Article  CAS  Google Scholar 

  168. Leyva-Pérez A, Oliver-Meseguer J, Cabrero-Antonino JR, Rubio-Marqués P, Serna P, Al-Resayes SI, Corma A (2013) Reactivity of electron-deficient alkynes on gold nanoparticles. ACS Catal 3:1865–1873. https://doi.org/10.1021/cs400362c

    Article  CAS  Google Scholar 

  169. Serna P, Corma A (2014) Towards a zero-waste oxidative coupling of nonactivated aromatics by supported gold nanoparticles. ChemSusChem 7:2136–2139. https://doi.org/10.1002/cssc.201402061

    Article  CAS  PubMed  Google Scholar 

  170. Ishida T, Aikawa S, Mise Y, Akebi R, Hamasaki A, Honma T, Ohashi H, Tsuji T, Yamamoto Y, Miyasaka M, Yokoyama T, Tokunaga M (2015) Direct C-H arene homocoupling over gold nanoparticles supported on metal oxides. ChemSusChem 8:695–701. https://doi.org/10.1002/cssc.201402822

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamao Ishida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ishida, T., Taketoshi, A., Haruta, M. (2020). Gold Nanoparticles for Oxidation Reactions: Critical Role of Supports and Au Particle Size. In: Kobayashi, S. (eds) Nanoparticles in Catalysis. Topics in Organometallic Chemistry, vol 66. Springer, Cham. https://doi.org/10.1007/3418_2020_42

Download citation

Publish with us

Policies and ethics