Skip to main content

Nanocatalysis Meets Biology

  • Chapter
  • First Online:
Nanoparticles in Catalysis

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 66))

Abstract

This chapter will review the currently available strategies for interfacing transition metal nanoparticles with enzymes and other more complex biological systems, as well as the applications of such biometal hybrids in the areas of catalysis, energy production, environmental remediation, and medicine. In the first part of this chapter, the focus will be on the many nanometal-enzyme hybrids that have been developed for applications in organic synthesis. Within the field of organic chemistry, nanometal-enzyme hybrids are often used as bifunctional catalysts to mediate different multistep transformations, as for example the dynamic kinetic resolution of alcohols and amines. The second part of this chapter will offer an overview of nanometal-enzyme hybrids that are used as bioelectrodes in biofuel cells. This area of research has grown significantly during the past decades, much because of the many potential future applications of such devices for medical purposes. Here, nanometal-enzyme hybrid based biofuel cells hold particular promise for biosensing applications, as well as for replacing battery-based solutions in actuator devices such as mechanical valves and pacemakers. In the final part of this chapter, the different strategies to use bacteria to synthesize metal nanoparticles will be reviewed. As will be shown by the many examples in this part, biologically synthesized and supported transition metal nanoparticles constitute interesting catalytic systems that could for example be used for energy production, pollutant degradation, and small molecule synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. San BH, Gusthart J, Lee SS, Kim KK (2018) Metal–enzyme hybrid catalysts in cascade and multicomponent processes. In: Montserrat D, Bäckvall JE, Pàmies O (eds) Artificial metalloenzymes and metalloDNAzymes in catalysis: from design to applications. Wiley-VCH, Weinheim, pp 321–351. https://doi.org/10.1002/9783527804085.ch11

    Chapter  Google Scholar 

  2. Chen M, Zeng G, Xu P, Lai C, Tang L (2017) How do enzymes ‘meet’ nanoparticles and nanomaterials? Trends Biochem Sci 42:914–930. https://doi.org/10.1016/j.tibs.2017.08.008

    Article  CAS  PubMed  Google Scholar 

  3. Pàmies O, Diéguez M, Bäckvall JE (2015) Artificial metalloenzymes in asymmetric catalysis: key developments and future directions. Adv Synth Catal 357:1567–1586. https://doi.org/10.1002/adsc.201500290

    Article  CAS  Google Scholar 

  4. Macaskie LE, Mkiheenko IP, Omajai JB, Stephen AJ, Wood J (2017) Metallic bionanocatalysts: potential applications as green catalysts and energy materials. Microb Biotechnol 10:1171–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pinyou P, Blay V, Muresan LM, Noguer T (2019) Enzyme-modified electrodes for biosensors and biofuel cells. Mater Horiz 6:1336–1358. https://doi.org/10.1039/c9mh00013e

    Article  CAS  Google Scholar 

  6. Kärkäs MD, Verho O, Åkermark B (2018) Metalloenzyme-inspired systems for alternative energy harvest. In: Montserrat D, Bäckvall JE, Pàmies O (eds) Artificial metalloenzymes and metalloDNAzymes in catalysis: from design to applications. Wiley-VCH, Weinheim, pp 353–381. https://doi.org/10.1002/9783527804085.ch12

    Chapter  Google Scholar 

  7. Lloyd JR, Byrne JM, Coker VS (2011) Biotechnological synthesis of functional nanomaterials. Curr Opin Biotechnol 22:509–515. https://doi.org/10.1016/j.copbio.2011.06.008

    Article  CAS  PubMed  Google Scholar 

  8. Bruggink A, Schoevaart R, Kieboom T (2003) Concepts of nature in organic synthesis: cascade catalysis and multistep conversions in concert. Org Process Res Dev 7:622–640. https://doi.org/10.1021/op0340311

    Article  CAS  Google Scholar 

  9. Liu J, Chakraborty S, Hosseinzadeh P, Yu Y, Tian S, Petrik I, Bhagi A, Lu Y (2014) Metalloproteins containing cytochrome, iron-sulfur, or copper redox centers. Chem Rev 114:4366–4469. https://doi.org/10.1021/cr400479b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hoffman BM, Lukoyanov D, Dean DR, Seefeldt LC (2013) Nitrogenase: a draft mechanism. Acc Chem Res 46:587–595. https://doi.org/10.1021/ar300267m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Barber J (2006) Photosystem II: an enzyme of global significance. Biochem Soc Trans 34:619–631. https://doi.org/10.1042/BST0340619

    Article  CAS  PubMed  Google Scholar 

  12. Köhler V, Turner NJ (2015) Artificial concurrent catalytic processes involving enzymes. Chem Commun 51:450–464. https://doi.org/10.1039/C4CC07277D

    Article  Google Scholar 

  13. Schwizer F, Okamoto Y, Heinisch T, Gu Y, Pellizzoni MM, Lebrun V, Reuter R, Köhler V, Lewis JC, Ward TR (2018) Artificial metalloenzymes: reaction scope and optimization strategies. Chem Rev 118:142–231. https://doi.org/10.1021/acs.chemrev.7b00014

    Article  CAS  PubMed  Google Scholar 

  14. Verho O, Bäckvall JE (2015) Chemoenzymatic dynamic kinetic resolution: a powerful tool for the preparation for the preparation of enantiomerically pure alcohols and amines. J Am Chem Soc 137:3996–4009. https://doi.org/10.1021/jacs.5b01031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Marcos R, Martín-Matute B (2012) Combined enzyme and transition-metal catalysis for dynamic kinetic resolution. Isr J Chem 52:639–652. https://doi.org/10.1002/ijch.201200012

    Article  CAS  Google Scholar 

  16. Larsson ALE, Persson BA, Bäckvall JE (1997) Enzymatic resolution of alcohols coupled with ruthenium-catalyzed racemization of the substrate alcohol. Angew Chem Int Ed 36:211–1212

    Article  Google Scholar 

  17. Dinh PM, Howarth JA, Hudnott AR, Williams JMJ, Harris W (1996) Catalytic racemization of alcohols: applications to enzymatic resolution reactions. Tetrahedron Lett 37:7623–7626. https://doi.org/10.1016/0040-4039(96)01677-2

    Article  CAS  Google Scholar 

  18. Allen JV, Williams JMJ (1996) Dynamic kinetic resolution with enzyme and palladium combinations. Tetrahedron Lett 37:1859–1862. https://doi.org/10.1016/0040-4039(96)00136-0

    Article  CAS  Google Scholar 

  19. Martín-Matute B, Edin M, Bogár K, Bäckvall JE (2004) Highly compatible metal and enzyme catalysts for efficient dynamic kinetic resolution of alcohols at ambient temperature. Angew Chem Int Ed 43:6535–6539. https://doi.org/10.1002/anie.200461416

    Article  CAS  Google Scholar 

  20. Fernández-Salas JA, Manzini S, Nolan SP (2014) A cationic ruthenium complex for the dynamic kinetic resolution of secondary alcohols. Chem Eur J 20:13132–13135. https://doi.org/10.1002/chem.201404096

    Article  CAS  PubMed  Google Scholar 

  21. Mavrynsky D, Päiviö M, Lundell K, Sillanpää R, Kanerva LT, Leino R (2009) Dicarbonylchloro(pentabenzylcyclopentadienyl)ruthenium as racemization catalyst in the dynamic kinetic resolution of secondary alcohols. Eur J Org Chem 2009:1317–1320. https://doi.org/10.1002/ejoc.200801248

    Article  CAS  Google Scholar 

  22. Kim MJ, Chung YI, Choi YK, Lee HK, Kim D, Park J (2003) (S)-selective dynamic kinetic resolution of secondary alcohols by the combination of subtilisin and an aminocyclopentadienylruthenium complex as the catalysts. J Am Chem Soc 125:11494–11495. https://doi.org/10.1021/ja036766r

    Article  CAS  PubMed  Google Scholar 

  23. Parvulescu A, Janssens J, Vanderleyden J, De Vos D (2010) Heterogeneous catalysts for racemization and dynamic kinetic resolution of amines and secondary alcohols. Top Catal 53:931–941. https://doi.org/10.1007/s11244-010-9512-x

    Article  CAS  Google Scholar 

  24. Reetz MT, Schimossek K (1996) Lipase-catalyzed dynamic kinetic resolution of chiral amines. Use of palladium as the racemization catalyst. Chimia 50:668–669

    CAS  Google Scholar 

  25. Parvulescu AN, Jacobs PA, De Vos DE (2007) Palladium catalysts on alkaline-earth supports for racemization and dynamic kinetic resolution of benzylic amines. Chem Eur J 13:2034–2043. https://doi.org/10.1002/chem.200600899

    Article  CAS  PubMed  Google Scholar 

  26. Parvulescu A, De Vos D, Jacobs P (2005) Efficient dynamic kinetic resolution of secondary amines with Pd on alkaline earth salts and a lipase. Chem Commun (42):5307–5309. https://doi.org/10.1039/B509747A

  27. Engström K, Shakeri M, Bäckvall JE (2011) Dynamic kinetic resolution of β-amino esters by a heterogeneous system of a palladium nanocatalyst and Candida antarctica lipase A. Eur J Org Chem 2011:1827–1830. https://doi.org/10.1002/ejoc.201001714

    Article  CAS  Google Scholar 

  28. Choi YK, Kim Y, Han K, Park J, Kim MJ (2009) Synthesis of optically active amino acid derivatives via dynamic kinetic resolution. J Org Chem 74:9543–9545. https://doi.org/10.1021/jo902034x

    Article  CAS  PubMed  Google Scholar 

  29. Kim MJ, Kim WH, Han K, Choi YK, Park J (2007) Dynamic kinetic resolution of primary amines with a recyclable Pd nanocatalyst for racemization. Org Lett 9:1157–1159. https://doi.org/10.1021/ol070130d

    Article  CAS  PubMed  Google Scholar 

  30. Xu G, Dai X, Fu S, Wu J, Yang L (2014) Efficient dynamic kinetic resolution of arylamines with Pd/layered double-hydroxide-dodecyl sulfate anion for racemization. Tetrahedron Lett 55:397–402. https://doi.org/10.1016/j.tetlet.2013.11.041

    Article  CAS  Google Scholar 

  31. Xu Y, Wang M, Feng B, Li Z, Li Y, Li H, Li H (2017) Dynamic kinetic resolution of aromatic sec-alcohols by using a heterogeneous palladium racemization catalyst and lipase. Cat Sci Technol 7:5838–5842. https://doi.org/10.1039/C7CY01954H

    Article  CAS  Google Scholar 

  32. Jin Q, Jia G, Zhang Y, Li C (2014) Modification of supported Pd catalysts by alkalic salts in the selective racemization and dynamic kinetic resolution of primary amines. Cat Sci Technol 4:464–471. https://doi.org/10.1039/C3CY00535F

    Article  CAS  Google Scholar 

  33. Gustafson KPJ, Lihammar R, Verho O, Engström K, Bäckvall JE (2014) Chemoenzymatic dynamic kinetic resolution of primary amines using a recyclable palladium nanoparticle catalyst together with lipases. J Org Chem 79:3747–3751. https://doi.org/10.1021/jo500508p

    Article  CAS  PubMed  Google Scholar 

  34. Shakeri M, Tai CW, Göthelid E, Oscarsson S, Bäckvall JE (2011) Small Pd nanoparticles supported in large pores of mesocellular foam: an excellent catalyst for racemization of amines. Chemistry–A Eur J 17(47):13269–13273. https://doi.org/10.1002/chem.20110126

    Article  CAS  Google Scholar 

  35. Filice M, Marciello M, del Puerto Morales M, Palomo JM (2013) Synthesis of heterogeneous enzyme–metal nanoparticle biohybrids in aqueous media and their applications in C–C bond formation and tandem catalysis. Chem Commun 49:6876–6878. https://doi.org/10.1039/C3CC42475H

    Article  CAS  Google Scholar 

  36. Engström K, Johnston EV, Verho O, Gustafson KPJ, Shakeri M, Tai CW, Bäckvall JE (2013) Co-immobilization of an enzyme and a metal into the compartments of mesoporous silica for cooperative tandem catalysis: an artificial metalloenzyme. Angew Chem Int Ed 52:14006–14010. https://doi.org/10.1002/anie.201306487

    Article  CAS  Google Scholar 

  37. Verho O, Åkermark T, Johnston EV, Gustafson KPJ, Tai CW, Svengren H, Kärkäs MD, Bäckvall JE, Åkermark B (2015) Well-defined palladium nanoparticles supported on siliceous mesocellular foam as heterogeneous catalysts for the oxidation of water. Chem Eur J 21:5909–5915

    Article  CAS  PubMed  Google Scholar 

  38. Johnston EV, Verho O, Kärkäs MD, Shakeri M, Tai CW, Palmgren P, Eriksson K, Oscarsson S, Bäckvall JE (2012) Highly dispersed palladium nanoparticles on mesocellular foam: an efficient and recyclable heterogeneous catalyst for alcohol oxidation. Chem Eur J 18:12202–12206. https://doi.org/10.1002/chem.201202157

    Article  CAS  PubMed  Google Scholar 

  39. Nagendiran A, Pascanu V, Bermejo Gómez A, González Miera G, Tai CW, Verho O, Martín-Matute B, Bäckvall JE (2016) Mild and selective catalytic hydrogenation of the C=C Bond in α,β-unsaturated carbonyl compounds using supported palladium nanoparticles. Chem Eur J 22:7184–7189. https://doi.org/10.1002/chem.201600878

    Article  CAS  PubMed  Google Scholar 

  40. Verho O, Gustafson KPJ, Nagendiran A, Tai CW, Bäckvall JE (2014) Mild and selective hydrogenation of nitro compounds using palladium nanoparticles supported on amino-functionalized mesocellular foam. ChemCatChem 6:3153–3159. https://doi.org/10.1002/cctc.201402488

    Article  CAS  Google Scholar 

  41. Verho O, Nagendiran A, Johnston EV, Tai CW, Bäckvall JE (2012) Nanopalladium on amino-functionalized mesocellular foam: an efficient catalyst for Suzuki reactions and transfer hydrogenations. ChemCatChem 5:612–618. https://doi.org/10.1002/cctc.201200247

    Article  CAS  Google Scholar 

  42. Li MB, Posevins D, Gustafson KPJ, Tai CW, Shchukarev A, Qiu Y, Bäckvall JE (2019) Diastereoselective cyclobutenol synthesis: a heterogeneous palladium-catalyzed oxidative carbocyclization-borylation of enallenols. Chem Eur J 25:210–215. https://doi.org/10.1002/chem.201805118

    Article  CAS  PubMed  Google Scholar 

  43. Deiana L, Jiang Y, Palo-Nieto C, Afewerki S, Incerti-Pradillos CA, Verho O, Tai CW, Johnston EV, Córdova A (2014) Combined heterogeneous metal/chiral amine: multiple relay catalysis for versatile eco-friendly synthesis. Angew Chem Int Ed 53:3447–3451. https://doi.org/10.1002/anie.201310216

    Article  CAS  Google Scholar 

  44. Bratt E, Verho O, Johansson MJ, Bäckvall JE (2014) A general Suzuki cross-coupling reaction of heteroaromatics catalyzed by nanopalladium on amino-functionalized siliceous mesocellular foam. J Org Chem 79:3946–3954. https://doi.org/10.1021/jo500409r

    Article  CAS  PubMed  Google Scholar 

  45. Gustafson KPJ, Görbe T, de Gonzalo-Calvo G, Yuan N, Schreiber CL, Shchukarev A, Tai CW, Persson I, Zou X, Bäckvall JE (2019) Chemoenzymatic dynamic kinetic resolution of primary benzylic amines using Pd0-CalB CLEA as a biohybrid catalyst. Chem Eur J 25:9174–9179. https://doi.org/10.1002/chem.201901418

    Article  CAS  PubMed  Google Scholar 

  46. Görbe T, Gustafson KPJ, Verho O, Kervefors G, Zheng H, Zou X, Johnston EV, Bäckvall JE (2017) Design of a Pd(0)-CalB CLEA biohybrid catalyst and its application in a one-pot cascade reaction. ACS Catalysis 7(3):1601–1605. https://doi.org/10.1021/acscatal.6b03481

    Article  CAS  Google Scholar 

  47. Sheldon RA (2011) Cross-linked enzyme aggregates as industrial biocatalysts. Org Process Res Dev 15:213–223. https://doi.org/10.1021/op100289f

    Article  CAS  Google Scholar 

  48. Zhang X, Jing L, Chang F, Chen S, Yang H, Yang Q (2017) Positional immobilization of Pd nanoparticles and enzymes in hierarchical yolk-shell@shell nanoreactors for tandem catalysis. Chem Commun 53:7780–7783. https://doi.org/10.1039/C7CC03177G

    Article  CAS  Google Scholar 

  49. Li X, Cao Y, Luo K, Sun Y, Xiong J, Wang L, Liu Z, Li J, Ma J, Ge J, Xiao H, Zare RN (2019) Highly active enzyme-metal nanohybrids synthesized in protein-polymer conjugates. Nat Catal 2:718–725. https://doi.org/10.1038/s41929-019-0305-8

    Article  CAS  Google Scholar 

  50. Li H, Qiu C, Cao X, Lu Y, Li G, He X, Lu Q, Chen K, Ouyang P, Tan W (2019) Artificial nanometalloenzymes for cooperative tandem catalysis. ACS Appl Mater Interfaces 11:15718–15726. https://doi.org/10.1021/acsami.9b03616

    Article  CAS  PubMed  Google Scholar 

  51. Conley BL, Pennington-Boggio MK, Boz E, Williams TJ (2010) Discovery, applications, and catalytic mechanisms of Shvo’s catalyst. Chem Rev 110:2294–2312. https://doi.org/10.1021/cr9003133

    Article  CAS  PubMed  Google Scholar 

  52. Prastaro A, Ceci P, Chiancone E, Cirilli R, Colone M, Fabrizi G, Stringaro A, Cacchi S (2009) Suzuki-Miyaura cross-coupling catalyzed by protein-stabilized palladium nanoparticles under aerobic conditions in water: application to a one-pot chemoenzymatic enantioselective synthesis of chiral biaryl alcohols. Green Chem 11:1929–1932

    Article  CAS  Google Scholar 

  53. San BH, Kim S, Moh SH, Lee H, Jung DY, Kim KK (2011) Platinum nanoparticles encapsulated by aminopeptidase: a multifunctional bioinorganic nanohybrid catalyst. Angew Chem Int Ed 50:11924–11929. https://doi.org/10.1002/anie.201101833

    Article  CAS  Google Scholar 

  54. Ganai AK, Shinde P, Dhar BB, Sen Gupta S, Prasad BLV (2013) Development of a multifunctional catalyst for a “relay” reaction. RSC Adv 3:2186–2191. https://doi.org/10.1039/C2RA22829G

    Article  CAS  Google Scholar 

  55. Li Z, Ding Y, Wu X, Ge J, Ouyang P, Liu Z (2016) An enzyme-copper nanoparticle hybrid catalyst prepared from disassembly of an enzyme-inorganic nanocrystal three-dimensional nanostructure. RSC Adv 6:20772–20776. https://doi.org/10.1039/C5RA27904F

    Article  CAS  Google Scholar 

  56. Wang Y, Zhang N, Zhang E, Han Y, Qi Z, Ansorge-Schumacher M, Ge Y, Wu C (2019) Heterogeneous metal-organic frameworks-based biohybrid catalysts for cascade reaction in organic solvent. Chem Eur J 25:1716–1721. https://doi.org/10.1002/chem.201805680

    Article  CAS  PubMed  Google Scholar 

  57. Cosnier S, Gross AJ, Giroud F, Holzinger M (2018) Beyond the hype surrounding biofuel cells: What’s the future of enzymatic fuel cells? Curr Opin Electrochem 12:148–155. https://doi.org/10.1016/j.coelec.2018.06.006

    Article  CAS  Google Scholar 

  58. Sekretaryova AN, Beni V, Eriksson M, Karyakin AA, Turner APF, Vagin MY (2014) Cholesterol self-powered biosensor. Anal Chem 86:9540–9547. https://doi.org/10.1021/ac501699p

    Article  CAS  PubMed  Google Scholar 

  59. Lad U, Khokhar S, Kale GM (2008) Electrochemical creatinine biosensors. Anal Chem 80:7910–7917. https://doi.org/10.1021/ac801500t

    Article  CAS  PubMed  Google Scholar 

  60. Aquino Neto S, Milton RD, Hickey DP, De Andrade AR, Minteer SD (2016) Membraneless enzymatic ethanol/O2 fuel cell: transitioning from an air-breathing Pt-based cathode to a bilirubin oxidase-based biocathode. J Power Sources 324:208–214. https://doi.org/10.1016/j.jpowsour.2016.05.073

    Article  CAS  Google Scholar 

  61. Gouranlou F, Ghourchian H, Kheirmand M, Salimi A (2017) Effect of support on power output of ethanol/O2 biofuel cell. Nanochem Res 2:214–222. https://doi.org/10.22036/ncr.2017.02.008

    Article  CAS  Google Scholar 

  62. Aquino Neto S, Almeida TS, Palma LM, Minteer SD, de Andrade AR (2014) Hybrid nanocatalysts containing enzymes and metallic nanoparticles for ethanol/O2 biofuel cell. J Power Sources 259:25–32. https://doi.org/10.1016/j.jpowsour.2014.02.069

    Article  CAS  Google Scholar 

  63. Bollella P, Hibino Y, Kano K, Gorton L, Antiochia R (2018) Highly sensitive membraneless fructose biosensor based on fructose dehydrogenase immobilized onto aryl thiol modified highly porous gold electrode: characterization and application in food samples. Anal Chem 90:12131–12136. https://doi.org/10.1021/acs.analchem.8b03093

    Article  CAS  PubMed  Google Scholar 

  64. Trivedi UB, Lakshiminarayana D, Kothari IL, Patel PB, Panchal CJ (2009) Amperometric fructose biosensor based on fructose dehydrogenase enzyme. Sensors Actuators B Chem 136:45–51. https://doi.org/10.1016/j.snb.2008.10.020

    Article  CAS  Google Scholar 

  65. Kucherenko IS, Topolnikova SOO (2019) Advances in the biosensors for lactate and pyruvate detection for medical applications: a review. Trends Anal Chem 110:160–172. https://doi.org/10.1016/j.trac.2018.11.004

    Article  CAS  Google Scholar 

  66. Rassaei L, Olthuis W, Tsujimura S, Sudhölter EJR, van der Berg A (2014) Lactate biosensors: current status and outlook. Anal Bioanal Chem 406:123–137. https://doi.org/10.1007/s00216-013-7307-1

    Article  CAS  PubMed  Google Scholar 

  67. Malik AM, Chaudhary R, Pundir CS (2019) An improved enzyme nanoparticles based amperometric pyruvate biosensor for detection of pyruvate in serum. Enzyme Microb Tecnol 123:30–38. https://doi.org/10.1016/j.enzmictec.2019.01.006

    Article  CAS  Google Scholar 

  68. Chaudhary R, Joshi A, Srivastava R (2017) pH and urea estimation in urine samples using single fluorophore and ratiometric fluorescent biosensors. Sci Rep 7:5840. https://doi.org/10.1038/s41598-017-06060-y

    Article  CAS  Google Scholar 

  69. Singh M, Verma N, Garg AK, Redhu N (2008) Urea biosensors. Sensors Actuators B Chem 134:345–351. https://doi.org/10.1016/j.snb.2008.04.025

    Article  CAS  Google Scholar 

  70. Wen Y, Xu J, Liu M, Li D, He H (2012) Amperometric vitamin C biosensor based on the immobilization of ascorbate oxidase into the biocompatible sandwich-type composite films. Appl Biochem Biotechnol 167:2023–2038. https://doi.org/10.1007/s12010-012-9711-y

    Article  CAS  PubMed  Google Scholar 

  71. Xu Q, Zhang F, Xu L, Leung P, Yang C, Li H (2017) The applications and prospect of fuel cells in medical field: a review. Renew Sust Energ Rev 67:574–580. https://doi.org/10.1016/j.rser.2016.09.042

    Article  CAS  Google Scholar 

  72. Arslan F, Beskan U (2014) An amperometric biosensor for glucose detection from glucose oxidase immobilized in polyaniline-polyvinylsulfonate-potassium ferricyanide film. Artif Cells Nanomed Biotechnol 42:284–288. https://doi.org/10.3109/21691401.2013.812650

    Article  CAS  PubMed  Google Scholar 

  73. Meredith MT, Kao DY, Hickey D, Schmidtke DW, Glatzhofer DT (2011) High current density ferrocene modified linear poly(ethylenimine) bioanodes and their use in biofuel cells. J Electrochem Soc 158:B166–B174. https://doi.org/10.1149/1.3505950

    Article  CAS  Google Scholar 

  74. Nakabayashi Y, Omayu A, Morii S, Yagi S (2000) Evaluation of osmium(II) complexes as mediators accessible for biosensors. Sensors Actuators B Chem 66:128–130. https://doi.org/10.1016/S0925-4005(00)00324-5

    Article  CAS  Google Scholar 

  75. Ohara TJ (1995) Osmium bipyridyl redox polymers used in enzyme electrodes. Platin Met Rev 39(2):54–62.

    Google Scholar 

  76. Raymundo-Pereira PA, Mascarenhas ACV, Teixeira MFS (2016) Evaluation of the oxo-bridged dinuclear ruthenium ammine complex as redox mediator in an electrochemical biosensor. Electroanalysis 28:562–569. https://doi.org/10.1002/elan.201500479

    Article  CAS  Google Scholar 

  77. Kosela E, Elzanowska H, Wlodzimierz K (2002) Charge mediation by ruthenium poly(pyridine) complexes in ‘second-generation’ glucose biosensors based on carboxymethylated β-cyclodextrin polymer membranes. Bioanal Chem 373:724–734. https://doi.org/10.1007/s00216-002-1308-9

    Article  CAS  Google Scholar 

  78. Milton RD, Hickey DP, Abdellaoui S, Lim K, Wu F, Tan B, Minteer SD (2015) Rational design of quinones for high power density biofuel cells. Chem Sci 6:4867–4875. https://doi.org/10.1039/C5SC01538C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Reuillard B, Le Goff A, Agnes C, Holzinger M, Zebda A, Gondran C, Elouarzaki K, Cosnier S (2013) High power enzymatic biofuel cell based on naphthoquinone-mediated oxidation of glucose by glucose oxidase in a carbon nanotube 3D matrix. Phys Chem Chem Phys 15:4892–4896. https://doi.org/10.1039/C3CP50767J

    Article  CAS  PubMed  Google Scholar 

  80. Sekretaryova AN, Vagin MY, Beni V, Turner AP, Karyakin AA (2014) Unsubstituted phenothiazine as a superior water-insoluble mediator for oxidases. Biosens Bioelectron 53:275–282. https://doi.org/10.1016/j.bios.2013.09.071

    Article  CAS  PubMed  Google Scholar 

  81. Pöller S, Shao M, Sygmund C, Ludwig R, Schuhmann W (2013) Low potential biofuel cell anodes based on redox polymers with covalently bound phenothiazine derivatives for wiring flavin adenine dinucleotide-dependent enzymes. Electrochim Acta 110:152–158. https://doi.org/10.1016/j.electacta.2013.02.083

    Article  CAS  Google Scholar 

  82. Lee D, Kim YH, Park S (2016) Enzyme electrode platform using methyl viologen electrochemically immobilized on carbon materials. J Electrochem Soc 163:G93–G98. https://doi.org/10.1149/2.0521608jes

    Article  CAS  Google Scholar 

  83. Liu X, Hao M, Feng M, Zhang L, Zhao Y, Du X, Wang G (2013) A one-compartment direct glucose alkaline fuel cell with methyl viologen as electron mediator. Appl Energy 106:176–183. https://doi.org/10.1016/j.apenergy.2013.01.073

    Article  CAS  Google Scholar 

  84. Boussema F, Gross AJ, Hmida F, Ayed B, Majdoub H, Cosnier S, Maaref A, Holzinger M (2018) Dawson-type polyoxometalate nanoclusters confined in a carbon nanotube matrix as efficient redox mediators for enzymatic glucose biofuel cell anodes and glucose biosensors. Biosens Bioelectron 109:20–26. https://doi.org/10.1016/j.bios.2018.02.060

    Article  CAS  PubMed  Google Scholar 

  85. Falk M, Blum Z, Shleev S (2012) Direct electron transfer based enzymatic fuel cells. Electrochim Acta 82:191–202. https://doi.org/10.1016/j.electacta.2011.12.133

    Article  CAS  Google Scholar 

  86. Holland JT, Lau C, Brozik S, Atanassov P, Banta S (2011) Engineering of glucose oxidase for direct Electron transfer via site-specific gold nanoparticle conjugation. J Am Chem Soc 133:19262–19265. https://doi.org/10.1021/ja2071237

    Article  CAS  PubMed  Google Scholar 

  87. Charkraborty S, Babanova S, Rocha RC, Desireddy A, Artyushkova K, Boncella AE, Atanassov P, Martinez JS (2015) A hybrid DNA-templated gold nanocluster for enhanced enzymatic reduction of oxygen. J Am Chem Soc 137:11678–11687. https://doi.org/10.1021/jacs.5b05338

    Article  CAS  Google Scholar 

  88. Ramasamy RP, Luckarift HR, Ivnitski DM, Atanassov PB, Johnson GR (2010) High electrocatalytic activity of tethered multicopper oxidase-carbon nanotube conjugates. Chem Commun 46:6045–6047. https://doi.org/10.1039/C0CC00911C

    Article  CAS  Google Scholar 

  89. Weigel MC, Tritscher E, Lisdat F (2007) Direct electrochemical conversion of bilirubin oxidase at carbon nanotube-modified glassy carbon electrodes. Electrochem Commun 9:689–693. https://doi.org/10.1016/j.elecom.2006.10.052

    Article  CAS  Google Scholar 

  90. Shleev S, El Kasmi A, Ruzgas T, Gorton L (2004) Direct heterogeneous electron transfer reactions of bilirubin oxidase at a spectrographic graphite electrode. Electrochem Commun 6:934–939. https://doi.org/10.1016/j.elecom.2004.07.008

    Article  CAS  Google Scholar 

  91. Holade Y, Both Engel A, Tingry S, Cherifi A, Cornu D, Servat K, Napporn TW, Kokoh KB (2014) Insights on hybrid glucose biofuel cells based on bilirubin oxidase cathode and gold-based anode nanomaterials. ChemElectroChem 1:1976–1987. https://doi.org/10.1002/celc.201402142

    Article  CAS  Google Scholar 

  92. Chen Y, Gai P, Zhang J, Zhu JJ (2015) Design of an enzymatic biofuel cell with large power output. J Mater Chem A 3:11511–11516. https://doi.org/10.1039/C5TA01432H

    Article  CAS  Google Scholar 

  93. Gai P, Song R, Zhu C, Ji Y, Chen Y, Zhang JR, Zhu JJ (2015) A ternary hybrid of carbon nanotubes/graphitic carbon nitride nanosheets/gold nanoparticles used as robust substrate electrodes in enzyme biofuel cells. Chem Commun 51:14735–14738. https://doi.org/10.1039/C5CC06062A

    Article  CAS  Google Scholar 

  94. Ji Y, Gai P, Feng J, Wang L, Zhang J, Zhu JJ (2017) A Fe3O4-carbon nanofiber/gold nanoparticle hybrid for enzymatic biofuel cells with larger power output. J Mater Chem A 5:11026–11031. https://doi.org/10.1039/C7TA01931A

    Article  CAS  Google Scholar 

  95. Kwon CH, Ko Y, Shin D, Kwon M, Park J, Bae WK, Lee SW, Cho J (2018) High-power hybrid biofuel cells using layer-by-layer assembled glucose oxidase-coated metallic cotton fibers. Nat Commun 9:4479. https://doi.org/10.1038/s41467-018-06994-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kwon CH, Ko Y, Shin D, Lee SW, Cho J (2019) Highly conductive electrocatalytic gold nanoparticle-assembled carbon fiber electrode for high-performance glucose-based biofuel cells. J Mater Chem A 7:13495–13505. https://doi.org/10.1039/C8TA12342J

    Article  CAS  Google Scholar 

  97. Navae A, Narimani M, Korani A, Ahmadi R, Salimi A, Soltanian S (2016) Bimetallic Fe15Pt85 nanoparticles as an effective anodic electrocatalyst for non-enzymatic glucose/oxygen biofuel cell. Electrochim Acta 208:325–333. https://doi.org/10.1016/j.electacta.2016.05.033

    Article  CAS  Google Scholar 

  98. Zhao Y, Fan L, Gao D, Ren J, Hong B (2014) High-power non-enzymatic glucose biofuel cells based on three-dimensional platinum nanoclusters immobilized on multiwalled carbon nanotubes. Electrochim Acta 145:159–169. https://doi.org/10.1016/j.electacta.2014.09.006

    Article  CAS  Google Scholar 

  99. Wang Y, Chen J, Zhou C, Zhou L, Kong Y, Long H, Zhong S (2014) A novel self-cleaning, non-enzymatic glucose sensor working under a very low applied potential based on a Pt nanoparticle-decorated TiO2 nanotube array electrode. Electrochim Acta 115:269–276. https://doi.org/10.1016/j.electacta.2013.09.173

    Article  CAS  Google Scholar 

  100. Maity D, Rajendra Kumar RT (2019) Highly sensitive amperometric detection of glutamate by glutamic oxidase immobilized Pt nanoparticle decorated multiwalled carbon nanotubes(MWCNTs)/polypyrrole composite. Biosens Bioelectron 130:307–314. https://doi.org/10.1016/j.bios.2019.02.001

    Article  CAS  PubMed  Google Scholar 

  101. Sardesai NP, Karimi A, Andreescu S (2014) Engineered Pt-doped Nanoceria for oxidase-based bioelectrodes operating in oxygen-deficient environments. ChemElectroChem 1:2082–2088. https://doi.org/10.1002/celc.201402250

    Article  CAS  Google Scholar 

  102. Li Y, Chen SM, Chen WC, Li YS, Ajmal Ali M, AlHemaid FMA (2011) Platinum nanoparticles (PtNPs) – laccase assisted biocathode reduction of oxygen for biofuel cells. Int J Electrochem Sci 6:6398–6409

    CAS  Google Scholar 

  103. Trifonov A, Stemmer A, Tel-Vered R (2019) Enzymatic self-wiring in nanopores and its applications in direct electron transfer biofuel cells. Nanoscale Adv 1:347–356. https://doi.org/10.1039/C8NA00177D

    Article  CAS  Google Scholar 

  104. Bollella P, Mazzei F, Favero G, Fusco G, Ludwig R, Gorton L, Antiochia R (2017) Improved DET communication between cellobiose dehydrogenase and a gold electrode modified with a rigid self-assembled monolayer and green metal nanoparticles: the role of an ordered nanostructuration. Biosens Bioelectron 88:196–203. https://doi.org/10.1016/j.bios.2016.08.027

    Article  CAS  PubMed  Google Scholar 

  105. Liu L, Ci S, Bi L, Jia J, Wen Z (2017) Three-dimensional nanoarchitectures of co nanoparticles inlayed on N-doped macroporous carbon as bifunctional electrocatalysts for glucose fuel cells. J Mater Chem A 5:14763–14774. https://doi.org/10.1039/C7TA04114D

    Article  CAS  Google Scholar 

  106. Sun L, Ma Y, Zhang P, Chao L, Huang T, Xie Q, Chen C, Yao S (2015) An amperometric enzyme electrode and its biofuel cell basedon a glucose oxidase-poly(3-anilineboronic acid)-Pd nanoparticles bionanocomposite for glucose biosensing. Talanta 138:100–107. https://doi.org/10.1016/j.talanta.2015.02.011

    Article  CAS  PubMed  Google Scholar 

  107. Pakapongpan S, Tuantranont A, Poo-arporn RP (2017) Magnetic nanoparticle-reduced graphene oxide nanocomposite as a novel bioelectrode for mediatorless-membraneless glucose enzymatic biofuels cells. Sci Rep 7:12882. https://doi.org/10.1038/s41598-017-12417-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Gai P, Gu C, Hou T, Li F (2017) Ultrasensitive self-powered aptasensor based on enzyme biofuel cell and DNA bioconjugate: a facile and powerful tool for antibiotic residue detection. Anal Chem 89:2163–2169. https://doi.org/10.1021/acs.analchem.6b05109

    Article  CAS  PubMed  Google Scholar 

  109. Gu C, Gai P, Hou T, Li H, Xue C, Li F (2017) Enzymatic fuel cell-based self-powered homogeneous immunosensing platform via target-induced glucose release: an appealing alternative strategy for turn-on melamine assay. ACS Appl Mater Interfaces 9:35721–35728. https://doi.org/10.1021/acsami.7b07104

    Article  CAS  PubMed  Google Scholar 

  110. Wang Y, Zhang L, Cui K, Ge S, Zhao P, Yu J (2019) Paper-supported self-powered system based on a glucose/O2 biofuel cell for visual microRNA-21 sensing. ACS Appl Mater Interfaces 11:5114–5122. https://doi.org/10.1021/acsami.8b20034

    Article  CAS  PubMed  Google Scholar 

  111. Bollella P, Fusco G, Stevar D, Gorton L, Ludwig R, Ma S, Boer H, Koivula A, Tortolini C, Favero G, Antiochia R, Mazzei F (2018) A glucose/oxygen enzymatic fuel cell based on gold nanoparticles modified graphene screen-printed electrode. Proof-of-concept in human saliva. Sensors Actuators B Chem 256:921–930. https://doi.org/10.1016/j.snb.2017.10.025

    Article  CAS  Google Scholar 

  112. Göbel G, Beltran ML, Mudhenk J, Heinlein T, Schneider J, Lisdat F (2016) Operation of a carbon nanotube-based glucose/oxygen biofuel cell in human body liquids-performance factors and characteristics. Electrochim Acta 218:278–284. https://doi.org/10.1016/j.electacta.2016.09.128

    Article  CAS  Google Scholar 

  113. Anastasova S, Crewther B, Bembnowicz P, Curto V, Ip HMD, Rosa B, Yang GZ (2017) A wearable multisensing patch for continuous sweat monitoring. Biosens Bioelectron 93:139–145. https://doi.org/10.1016/j.bios.2016.09.038

    Article  CAS  PubMed  Google Scholar 

  114. Jia W, Valdés-Ramírez G, Bandokar AJ, Windmiller JR, Wang J (2013) Epidermal biofuel cells: energy harvesting from human perspiration. Angew Chem Int Ed 52:7233–7236. https://doi.org/10.1002/anie.201302922

    Article  CAS  Google Scholar 

  115. Xiao X, Siepenkotter T, Ó Conghaile P, Leech D, Magner E (2018) Nanoporous gold-based biofuel cells on contact lenses. ACS Appl Mater Interfaces 10:7107–7116. https://doi.org/10.1021/acsami.7b18708

    Article  CAS  PubMed  Google Scholar 

  116. Falk M, Andoralov V, Silow M, Toscano MD, Shleev S (2013) Miniature biofuel cell as a potential power source for glucose-sensing contact lenses. Anal Chem 85:6342–6348. https://doi.org/10.1021/ac4006793

    Article  CAS  PubMed  Google Scholar 

  117. Lloyd JR, Yong P, Macaskie LE (1998) Enzymatic recovery of elemental palladium by using sulfate-reducing bacteria. Appl Environ Microbiol 66:543–548

    Google Scholar 

  118. Jayaseelan C, Rahuman AA, Mohana Roopan S, Vishnu Kirthi A, Venkatesan J, Kim SK, Iyappan M, Siva C (2013) Biological approach to synthesize TiO2 nanoparticles using Aeromonas hydrophila and its antibacterial activity. Spectrochim Acta A 107:82–89. https://doi.org/10.1016/j.saa.2012.12.083

    Article  CAS  Google Scholar 

  119. Jayaseelan C, Rahuman AA, Vishnu Kirthi A, Marimuthu S, Santhoshkumar T, Bagavan A, Gaurav K, Karthik L, Bhaskara Rao KV (2012) Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim Acta A 90:78–84. https://doi.org/10.1016/j.saa.2012.01.006

    Article  CAS  Google Scholar 

  120. Bunge M, Søbjerg LS, Rotaru AE, Gauthier D, Lindhardt AT, Hause G, Finster K, Kingshott P, Skrydstrup T, Meyer RL (2010) Formation of palladium(0) nanoparticles at microbial surfaces. Biotechnol Bioeng 107:206–215. https://doi.org/10.1002/bit.22801

    Article  CAS  PubMed  Google Scholar 

  121. Levar CE, Hoffman CL, Dunshee AJ, Toner BM, Bond DR (2017) Redox potential as a master variable controlling pathways of metal reduction by Geobacter sulfurreducens. ISME J 11:741–752. https://doi.org/10.1038/ismej.2016.146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Law N, Ansari S, Livens FR, Renshaw JC, Lloyd JR (2008) Formation of nanoscale elemental silver particles via enzymatic reduction by Geobacter sulfurreducens. Appl Environ Microbiol 74:7090–7093. https://doi.org/10.1128/aem.01069-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Klaus T, Joerger R, Olsson E, Granqvist CG (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci U S A 96:13611–13614. https://doi.org/10.1073/pnas.96.24.13611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. De Corte S, Hennebel T, De Gusseme B, Verstraete W, Boon N (2012) Bio-palladium: from metal recovery to catalytic applications. Microb Biotechnol 5:5–17. https://doi.org/10.1111/j.1751-7915.2011.00265.x

    Article  CAS  PubMed  Google Scholar 

  125. Shi L, Rosso KM, Clarke TA, Richardson DJ, Zachara JM, Fredrickson JK (2012) Molecular underpinnings of Fe(III) oxide reduction by Shewanella oneidensis MR-1. Front Microbiol 3:50. https://doi.org/10.3389/fmicb.2012.00050

    Article  PubMed  PubMed Central  Google Scholar 

  126. Wang Q, Jones III AAD, Gralnick JA, Lin L, Buie CR (2019) Microfluidic dielectrophoresis illuminates the relationship between microbial cell envelope polarizability and electrochemical activity. Sci Adv 5:eaat5664. https://doi.org/10.1126/sciadv.aat5664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Dundas CM, Graham AJ, Romanovicz K, Keitz BK (2018) Extracellular electron transfer by Shewanella oneidensis controls palladium nanoparticle phenotype. ACS Synth Biol 7:2726–2736. https://doi.org/10.1021/acssynbio.8b00218

    Article  CAS  PubMed  Google Scholar 

  128. Fredrickson JK, Romine MF, Beliaev AS, Auchtung JM, Driscoll ME, Gardner TS, Nealson KH, Osterman AL, Pinchuk G, Reed JL, Rodionov DA, Rodrigues JLM, Saffarini DA, Serres MH, Spormann AM, Zhulin IB, Tiedje JM (2008) Towards environmental systems biology of Shewanella. Nat Rev Microbiol 6:592–603. https://doi.org/10.1038/nrmicro1947

    Article  CAS  PubMed  Google Scholar 

  129. De Windt W, Aelterman P, Verstraete W (2005) Bioreductive deposition of palladium (0) nanoparticles on Shewanella oneidensis with catalytic activity towards reductive dechlorination of polychlorinated biphenyls. Environ Microbiol 7:314–325. https://doi.org/10.1111/j.1462-2920.2005.00696.x

    Article  PubMed  Google Scholar 

  130. Mertens B, Blothe C, Windey K, De Windt W, Verstraete W (2007) Biocatalytic dechlorination of lindane by nano-scale particles of Pd(0) deposited on Shewanella oneidensis. Chemosphere 66:99–105. https://doi.org/10.1016/j.chemosphere.2006.05.018

    Article  CAS  PubMed  Google Scholar 

  131. De Corte S, Hennebel T, Fitts JP, Sabbe T, Bliznuk V, Verschuere S, van der Lelie, Verstraete W, Boon N (2011) Biosupported bimetallic Pd-Au nanocatalysts for dechlorination of environmental contaminants. Environ Sci Technol 45:8506–8513. https://doi.org/10.1021/es2019324

    Article  CAS  PubMed  Google Scholar 

  132. Wu R, Tian X, Xiao Y, Ulstrup J, Mølager Christensen HE, Zhao F, Zhang J (2018) Selective electrocatalysis of biofuel molecular oxidation using palladium nanoparticles generated on Shewanella oneidensis MR-1. J Mater Chem A 6:10655–10662. https://doi.org/10.1073/10.1039/C8TA01318G

    Article  CAS  Google Scholar 

  133. Kimber RL, Lewis EA, Parmeggiani F, Smith K, Bagshaw H, Starborg T, Joshi N, Figueroa AI, van der Laan G, Cibin G, Gianolio D, Haigh SJ, Pattrick RAD, Turner NJ, Lloyd JR (2018) Biosynthesis and characterization of copper nanoparticles using Shewanella oneidensis: applications for click chemistry. Small 14:1703145. https://doi.org/10.1002/smll.201703145

    Article  CAS  Google Scholar 

  134. Sveidal Søbjerg L, Gauthier D, Thyboe Lindhardt A, Bunge M, Finster K, Meyer RL, Skrydstrup T (2009) Bio-supported palladium nanoparticles as a catalyst for Suzuki-Miyaura and Mizoroki-heck reactions. Green Chem 11:2041–2046. https://doi.org/10.1039/B918351P

    Article  Google Scholar 

  135. Creamer NJ, Mikheenko IP, Yong P, Deplanche K, Sanyahumbi D, Wood J, Pollmann K, Merroun M, Selenska-Pobell S, Macaskie LE (2007) Novel supported Pd hydrogenation bionanocatalyst for hybrid homogeneous/heterogeneous catalysis. Catal Today 128:80–87. https://doi.org/10.1016/j.cattod.2007.04.014

    Article  CAS  Google Scholar 

  136. Mabbett AN, Sanyahumbi D, Yong P, Macaskie LE (2006) Biorecovered precious metals from industrial wastes: single-step conversion of a mixed metal liquid waste to a bioinorganic catalyst with environmental application. Environ Sci Technol 40:1015–1021. https://doi.org/10.1021/es0509836

    Article  CAS  PubMed  Google Scholar 

  137. Mabbett AN, Macaskie LE (2002) A new bioinorganic process for the remediation of Cr(VI). J Chem Technol Biotechnol 77:1169–1175. https://doi.org/10.1002/jctb.693

    Article  CAS  Google Scholar 

  138. Yong P, Rowson NA, Farr JPG, Harris IR, Macaskie LE (2002) Bioreduction and biocrystallization of palladium by Desulfovibrio desulfuricans NCIMB 8307. Biotechnol Bioeng 80:369–379. https://doi.org/10.1002/bit.10369

    Article  CAS  PubMed  Google Scholar 

  139. Foulkes JM, Malone KJ, Coker VS, Turner NJ, Lloyd JR (2011) Engineering a biometallic whole cell catalyst for enantioselective deracemization reactions. ACS Catal 1:1589–1594. https://doi.org/10.1021/cs200400t

    Article  CAS  Google Scholar 

  140. Reich S, Agarwal S, Greiner A (2019) Electrospun bacteria-gold nanoparticle/polymer composite mesofiber nonwovens for catalytic applications. Macromol Chem Phys 220:1900007. https://doi.org/10.1002/macp.201900007

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Oscar Verho or Jan-E. Bäckvall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verho, O., Bäckvall, JE. (2020). Nanocatalysis Meets Biology. In: Kobayashi, S. (eds) Nanoparticles in Catalysis. Topics in Organometallic Chemistry, vol 66. Springer, Cham. https://doi.org/10.1007/3418_2020_38

Download citation

Publish with us

Policies and ethics