Skip to main content

Oxygen Effect in Heteromultimetallic Catalysis: Oxygen-Bridged Catalysts for Olefin Polymerization Process

  • Chapter
  • First Online:
Organometallics in Process Chemistry

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 65))

  • 931 Accesses

Abstract

Generation of highly Lewis acidic metal center in a catalytic system has been one of the key challenges in olefin polymerization. Highly acidic metal center can easily bind with a nucleophilic monomer and starts the polymerization process. With this objective in mind, we categorically designed and synthesized catalysts containing enhanced Lewis acidic metal centers of catalytically active metal centers with enhanced Lewis acidity. We have developed a carefully designed synthetic approach of introducing oxygen between two different metal centers to produce multimetallic systems. The attachment of the oxygen between the two metal centers also brings the metals into close proximity at the molecular level, resulting in a pronounced chemical communication between the metals. The compounds containing covalently bridged metal centers have often modified the fundamental properties of the individual metal atoms and exhibit “cooperativity” that is difficult to achieve. The synthetic strategy involves the isolation of different hydroxides as precursors for multimetallic systems. By taking the advantage of oxophilicity of Group-4 metals and Bronsted acidic character of M(O–H) species, new class of heterometallic complexes have been assembled. Many of these isolated complexes demonstrated excellent catalytic activity in olefin and styrene polymerization. Computational studies reveal that the improvement in the catalytic properties is a result of the presence of a more electrophilic metal center, which is essential for the catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Equvi:

Equivalent

GPC:

Gel permeation chromatography

HOMO:

Highest occupied molecular orbital

IR:

Infrared

LUMO:

Lowest unoccupied molecular orbital

MAO:

Methylalumoxane

M n :

Number average molecular weight

M w :

Weight average molecular weight

NBO:

Natural bond orbital

NMR:

Nuclear magnetic resonance

PDI:

Polydispersity index

PE:

Polyethylene

ppm:

Parts per million

PS:

Polystyrene

ROP:

Ring-opening polymerization

tert :

Tertiary

THF:

Tetrahydrofuran

TOF:

Turnover frequency

References

  1. Ueland BG, Lau GC, Cava RJ, O’Brien J, Schiffer P (2006). Phys Rev Lett 96:272161

    Article  CAS  Google Scholar 

  2. Boča R, Boča M, Dlháň L, Falk K, Fuess H, Hasse W, Jaroščiak R, Paṕanková B, Renz F, Vrbováand M, Werner R (2001). Inorg Chem 40:3025

    Article  PubMed  CAS  Google Scholar 

  3. Cotton FA, Walton RA (1993) Multiple bonds between metal atoms. Oxford, New York

    Google Scholar 

  4. Invergo AM, Liu S, Dicken RD, Mouat AR, Delferro M, Lohr TL, Marks TJ (2018). Organometallics 37:2429

    Article  CAS  Google Scholar 

  5. Gibson VC, Spitzmesser SK (2003). Chem Rev 103:283–315

    Article  CAS  PubMed  Google Scholar 

  6. Al-Shammari H, Alt H (2012) WO 2012/110227 Al

    Google Scholar 

  7. Collins RA, Russell AF, Mountford P (2015). Appl Petrochem Res 5:153

    Article  CAS  Google Scholar 

  8. Li H, Marks RJ (2006). PNAS 103:15295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shamiri A, Chakrabarti MH, Jahan S, Hussain MA, Kaminsky W, Aravind PV, Yehye WA (2014). Materials 7:5069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Berry JF, Thomas CM (2017). Dalton Trans 46:5472

    Article  CAS  PubMed  Google Scholar 

  11. Fürstner A, Davies PW (2007). Angew Chem 119:3478

    Article  Google Scholar 

  12. Fürstner A, Davies PW (2007). Angew Chem Int Ed 46:3410

    Article  CAS  Google Scholar 

  13. Chianese AR, Lee SJ, Gagne MR (2007). Angew Chem 119:4118

    Article  Google Scholar 

  14. Chianese AR, Lee SJ, Gagne MR (2007). Angew Chem Int Ed 46:4042

    Article  CAS  Google Scholar 

  15. Smidt J, Hafner W, Jira R, Sedlmeier J, Sieber R, Ruttinger R, Kojer H (1959). Angew Chem 71:176

    Article  CAS  Google Scholar 

  16. Smidt J, Hafner W, Jira R, Sieber R, Sedlmeier J, Sabel A (1962). Angew Chem 74:93

    Article  CAS  Google Scholar 

  17. Smidt J, Hafner W, Jira R, Sieber R, Sedlmeier J, Sabel A (1962). Angew Chem Int Ed Engl 1:80

    Article  Google Scholar 

  18. Jones R (1968). Chem Rev 68:785

    Article  CAS  Google Scholar 

  19. Hartley FR (1969). Chem Rev 69:799

    Article  CAS  Google Scholar 

  20. Vigalok A, Kaspi AW (2010). Top Organomet Chem 31:19

    Article  CAS  Google Scholar 

  21. Bryndza HE, Tam W (1988). Chem Rev 88:1163

    Article  CAS  Google Scholar 

  22. Gurubasavaraj PM, Nomura K (2010). Organometallics 29:3500

    Article  CAS  Google Scholar 

  23. Gurubasavaraj PM, Nomura K (2009). Inorg Chem 48:9491

    Article  CAS  PubMed  Google Scholar 

  24. Ueland BG, Lau GC, Cava RJ, O’Brien JR, Schiffer P (2006). Phys Rev Lett 96:027216

    Article  CAS  PubMed  Google Scholar 

  25. Tao R-J, Li F-A, Zang S-Q, Cheng Y-X, Wang Q-L, Niu J-Y, Liao D-Z (2006). J Coord Chem 59:901

    Article  CAS  Google Scholar 

  26. Stenkamp RE (1994). Chem Rev 94:715

    Article  CAS  Google Scholar 

  27. Rosenzweig AC, Frederick CA, Lippard SJ, Nordlund P (1993). Nature 366:537

    Article  CAS  PubMed  Google Scholar 

  28. Whittington DA, Lippard SJ (2001). J Am Chem Soc 123:827

    Article  CAS  PubMed  Google Scholar 

  29. Nordlund P, Sjöberg B-M, Eklund H (1990). Nature 345:593

    Article  CAS  PubMed  Google Scholar 

  30. Logan DT, Su X-D, Aaberg A, Regnstroem K, Hajdu J, Eklund H, Nordlund P (1996). Structure 4:1053

    Article  CAS  PubMed  Google Scholar 

  31. Jabri E, Carr MB, Hausinger RP, Karplus PA (1995). Science 268:998

    Article  CAS  PubMed  Google Scholar 

  32. Strater N, Klabunde T, Tucker P, Witzel H, Krebs B (1995). Science 268:1489

    Article  CAS  PubMed  Google Scholar 

  33. Gerdemann C, Eicken C, Krebs B (2002). Acc Chem Res 35:183

    Article  CAS  PubMed  Google Scholar 

  34. Kanyo ZF, Scolnick LR, Ash DE, Christianson DW (1996). Nature 383:554

    Article  CAS  PubMed  Google Scholar 

  35. Cox JD, Cama E, Colleluori DM, Pethe S, Boucher J-L, Mansuy D, Ash DE, Christianson DW (2001). Biochemistry 40:2689

    Article  CAS  PubMed  Google Scholar 

  36. Zhang B, Ni Z-H, Cui A-L, Kou H-Z (2006). New J Chem 30:1327

    Article  CAS  Google Scholar 

  37. Khanra S, Weyhermuller T, Bill E, Chaudhuri P (2006). Inorg Chem 45:5911

    Article  CAS  PubMed  Google Scholar 

  38. Ueki S, Kobayashi Y, Ishida T, Nogami T (2005). Chem Commun 41:5223

    Article  CAS  Google Scholar 

  39. Kornienko A, Banerjee S, Kumar GA, Riman RE, Emge TJ, Brennan JG (2005). J Am Chem Soc 127:14008

    Article  CAS  PubMed  Google Scholar 

  40. Fernández J, Fornieś J, Gil B, Gómez J, Lalinde E, Moreno MT (2006). Organometallics 25:2274

    Article  CAS  Google Scholar 

  41. Bosnich B (1999). Inorg Chem 38:2554

    Article  CAS  Google Scholar 

  42. McCollum DG, Bosnich B (1998). Inorg Chim Acta 270:13

    Article  CAS  Google Scholar 

  43. Sadhukhan N, Bera JK (2009). Inorg Chem 48:978

    Article  CAS  PubMed  Google Scholar 

  44. Gianneschi NC, Masar III MS, Mirkin CA (2005). Acc Chem Res 38:825

    Article  CAS  PubMed  Google Scholar 

  45. Stephan DW (1989). Coord Chem Rev 95:41

    Article  CAS  Google Scholar 

  46. Chetcuti MJ (1994) In: Abel EW, Stone FGA, Wilkinson GW (eds) Comprehensive coordination chemistry II, vol 10. Pergamon, New York, pp 23–84

    Google Scholar 

  47. Wheatley N, Kalck P (1999). Chem Rev 99:3379

    Article  CAS  PubMed  Google Scholar 

  48. Gade LH (2000). Angew Chem 112:2768

    Article  Google Scholar 

  49. Gade LH (2000). Angew Chem Int Ed 39:2658

    Article  CAS  Google Scholar 

  50. Fulton JR, Hanna TA, Bergman RG (2000). Organometallics 19:602

    Article  CAS  Google Scholar 

  51. Gade LH, Memmler H, Kauper U, Schneider A, Fabre S, Bezougli I, Lutz M, Galka C, Scowen IJ, McPartlin M (2000). Chem Eur J 6:692

    Article  CAS  PubMed  Google Scholar 

  52. Takeuchi D, Kuwabara J, Osakada K (2003). Organometallics 22:2305

    Article  CAS  Google Scholar 

  53. Guo N, Stern CL, Marks TJ (2008). J Am Chem Soc 130:2246

    Article  CAS  PubMed  Google Scholar 

  54. Wang J, Li H, Guo N, Li L, Stern CL, Marks TJ (2004). Organometallics 23:5112

    Article  CAS  Google Scholar 

  55. Abramo GP, Li L, Marks TJ (2002). J Am Chem Soc 124:13966

    Article  CAS  PubMed  Google Scholar 

  56. Alt HG, Köppl A (2000). Chem Rev 100:1205

    Article  CAS  PubMed  Google Scholar 

  57. Komon ZJA, Diamond GM, Leclerc MK, Murphy V, Okazaki M, Bazan GC (2002). J Am Chem Soc 124:15280

    Article  CAS  PubMed  Google Scholar 

  58. Quijada R, Rojas R, Bazan G, Komon ZJA, Mauler RS, Galland GB (2001). Macromolecules 34:2411

    Article  CAS  Google Scholar 

  59. Komon ZJA, Bu X, Bazan GC (2000). J Am Chem Soc 122:1830

    Article  CAS  Google Scholar 

  60. Komon ZJA, Bu X, Bazan GC (2000). J Am Chem Soc 122:12379

    Article  CAS  Google Scholar 

  61. Singh S, Roesky HW (2007). Dalton Trans 14:1360

    Article  Google Scholar 

  62. Mandal SK, Roesky HW (2010). Acc Chem Res 43:248

    Article  CAS  PubMed  Google Scholar 

  63. Roesky HW, Singh S, Jancik V, Chandrasekhar V (2004). Acc Chem Res 37:969

    Article  CAS  PubMed  Google Scholar 

  64. Roesky HW, Singh S, Yusuff KKM, Maguire JA, Hosmane NS (2006). Chem Rev 106:3813

    Article  CAS  PubMed  Google Scholar 

  65. Bai G, Peng Y, Roesky HW, Li J, Schmidt H-G, Noltemeyer M (2003). Angew Chem 115:1164

    Article  Google Scholar 

  66. Bai G, Peng Y, Roesky HW, Li J, Schmidt H-G, Noltemeyer M (2003). Angew Chem Int Ed 42:1132

    Article  CAS  Google Scholar 

  67. Bai G, Roesky HW, Li J, Noltemeyer M, Schmidt H-G (2003). Angew Chem 115:5660

    Article  Google Scholar 

  68. Bai G, Roesky HW, Li J, Noltemeyer M, Schmidt H-G (2003). Angew Chem Int Ed 42:5502

    Article  CAS  Google Scholar 

  69. Bai G, Singh S, Roesky HW, Noltemeyer M, Schmidt H-G (2005). J Am Chem Soc 127:3449

    Article  CAS  PubMed  Google Scholar 

  70. Gurubasavaraj PM, Roesky HW, Sharma PMV, Oswald RB, Dolle V, Herbst-Irmer R, Pal A (2007). Organometallics 26:3346

    Article  CAS  Google Scholar 

  71. Roesky HW, Walawalkar MG, Murugavel R (2001). Acc Chem Res 34:201

    Article  CAS  PubMed  Google Scholar 

  72. Storre J, Schnitter C, Roesky HW, Schmidt H-G, Noltemeyer M, Fleischer R, Stalke D (1997). J Am Chem Soc 119:7505

    Article  CAS  Google Scholar 

  73. Sinn H, Kaminsky W, Vollmer H-J, Woldt R (1980). Angew Chem 92:396

    Article  CAS  Google Scholar 

  74. Sinn H, Kaminsky W, Vollmer H-J, Woldt R (1980). Angew Chem Int Ed 19:390

    Article  Google Scholar 

  75. Sinn H, Kaminsky W (1980). Adv Organomet Chem 18:99

    Article  CAS  Google Scholar 

  76. Kaminsky W, Külper K, Brintzinger HH, Wild FRWP (1985). Angew Chem 97:507

    Article  CAS  Google Scholar 

  77. Kaminsky W, Külper K, Brintzinger HH, Wild FRWP (1985). Angew Chem Int Ed 24:507

    Article  Google Scholar 

  78. Yang Y, Schulz T, John M, Yang Z, Jiménez-Pérez VM, Roesky HW, Gurubasavaraj PM, Stalke D, Ye H (2008). Organometallics 27:769

    Article  CAS  Google Scholar 

  79. Gurubasavaraj PM, Charantimath JS (2017). Adv Mater Proc 2(10):643–647

    Article  Google Scholar 

  80. Hillhouse GL, Bercaw JE (1984). J Am Chem Soc 106:5472–5478

    Article  CAS  Google Scholar 

  81. Howard WA, Waters M, Parkin G (1993). J Am Chem Soc 115:4917

    Article  CAS  Google Scholar 

  82. Gurubasavaraj PM, Mandal SK, Roesky HW, Oswald RB, Pal A, Noltemeyer M (2007). Inorg Chem 46:1056

    Article  CAS  PubMed  Google Scholar 

  83. Jancik V, Pineda LW, Stückl AC, Roesky HW, Herbst-Irmer R (2005). Organometallics 24:1511

    Article  CAS  Google Scholar 

  84. Foster JP, Weinhold F (1980). J Am Chem Soc 102:7211

    Article  CAS  Google Scholar 

  85. Gurubasavaraj PM, Roesky HW, Nekoueishahraki B, Pal A, Herbst-Irmer R (2008). Inorg Chem 47:5324

    Article  CAS  PubMed  Google Scholar 

  86. Ewart SW, Baird MC (1999). Top Catal 7:1

    Article  CAS  Google Scholar 

  87. Mandal SK, Gurubasavaraj PM, Roesky HW, Oswald RB, Magull J, Ringe A (2007). Inorg Chem 46:7594

    Article  CAS  PubMed  Google Scholar 

  88. Jordan RF, Bajgur CS, Willett R, Scott B (1986). J Am Chem Soc 108:7410

    Article  CAS  Google Scholar 

  89. Nikiforov GB, Roesky HW, Schulz T, Stalke D, Witt M (2008). Inorg Chem 47:6435

    Article  CAS  PubMed  Google Scholar 

  90. Yang X, Stern CL, Marks TJ (1991). J Am Chem Soc 113:3623

    Article  CAS  Google Scholar 

  91. Brintzinger H-H, Fischer D, Mülhaupt R, Rieger B, Waymouth R (1995). Angew Chem 107:1255

    Article  Google Scholar 

  92. Brintzinger H-H, Fischer D, Mülhaupt R, Rieger B, Waymouth R (1995). Angew Chem Int Ed 34:1143

    Article  CAS  Google Scholar 

  93. Bochmann M (1996). J Chem Soc Dalton Trans:255

    Google Scholar 

  94. McKnight AL, Waymouth RM (1998). Chem Rev 98:2587

    Article  CAS  PubMed  Google Scholar 

  95. Younkin TR, Connor EF, Henderson JI, Friedrich SK, Grubbs RH, Bansleben DA (2000). Science 287:460

    Article  CAS  PubMed  Google Scholar 

  96. Rodriguez BA, Delferro M, Marks TJ (2009). J Am Chem Soc 131:5902

    Article  CAS  PubMed  Google Scholar 

  97. Motta A, Fragala IL, Marks TJ (2009). J Am Chem Soc 131:3974

    Article  CAS  PubMed  Google Scholar 

  98. Ishino H, Takemoto S, Hirata K, Kanaizuka Y, Hidai M, Nabika M, Seki Y, Miyatake T, Suzuki N (2004). Organometallics 23:4544

    Article  CAS  Google Scholar 

  99. Britovsek GJP, Gibson VC, Wass DF (1999). Angew Chem 111:448

    Article  Google Scholar 

  100. Britovsek GJP, Gibson VC, Wass DF (1999). Angew Chem Int Ed 38:428

    Article  CAS  Google Scholar 

  101. Mandal SK, Gurubasavaraj PM, Roesky HW, Schwab G, Stalke D, Oswald RB, Dolle V (2007). Inorg Chem 46:10158

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Financial support of the Deutsche Forschungsgemeinschaft Prohama, Ludwigshafen, and the Fonds der Chemischen Industrie is gratefully acknowledged. PMG Thanks UGC for Raman Fellowship for Postdoctoral Research in the USA (F. No. 5-128) and VGST for Seed Money to Young Scientists for Research (SMYSR) award and Rani Channamma University for Minor Research Project (MRP) for Faculty. The authors are grateful to the students, postdoctoral fellows, and colleagues who have contributed to this research; their names are cited in the references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabhuodeyara M. Gurubasavaraj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gurubasavaraj, P.M., Roesky, H.W., Hosmane, N.S. (2019). Oxygen Effect in Heteromultimetallic Catalysis: Oxygen-Bridged Catalysts for Olefin Polymerization Process. In: Colacot, T., Sivakumar, V. (eds) Organometallics in Process Chemistry. Topics in Organometallic Chemistry, vol 65. Springer, Cham. https://doi.org/10.1007/3418_2019_29

Download citation

Publish with us

Policies and ethics