Skip to main content

Determining and Understanding N-H Bond Strengths in Synthetic Nitrogen Fixation Cycles

Part of the Topics in Organometallic Chemistry book series (TOPORGAN,volume 60)

Abstract

The fixation of atmospheric dinitrogen to ammonia using molecular catalysts has been a long-standing challenge in homogeneous catalysis and synthetic chemistry. New approaches to this problem may offer more energy-efficient and carbon-neutral routes to this important industrial compound. Despite the ubiquity of ammine, amide, imide and diazenide ligands in coordination chemistry, little thermodynamic data is available for understanding N-H bond strengths in molecules bearing these nitrogenous fragments. This article presents an overview of both computational and experimental approaches for the determination of N-H bond dissociation free energies in a variety of compounds relevant to nitrogen fixation to ammonia. The influence of metal oxidation state, ancillary ligand and identity of the nitrogen donor are highlighted. Implications for future design of molecular systems for the reduction of dinitrogen are discussed.

Keywords

  • Ammonia
  • Bond dissociation free energy
  • Nitrogen fixation

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/3418_2016_8
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-57714-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. Smil V (2001) Enriching the earth: Fritz Haber, Carl Bosch, and the transformation of world food production. MIT Press, Cambridge, MA

    Google Scholar 

  2. Smil V (1999) Nature 400:415

    CAS  CrossRef  Google Scholar 

  3. Haber F, van Oordt G (1905) Z Anorg Chem 43:111

    CrossRef  Google Scholar 

  4. Haber F, van Oordt G (1905) Z Anorg Chem 44:341

    CrossRef  Google Scholar 

  5. Haber F, van Oordt G (1905) Anorg Chem 47:42

    CAS  CrossRef  Google Scholar 

  6. Tamaru K (1991) In: Jennings JR (ed) Catalytic ammonia synthesis, Plenum Press, New York, NY

    Google Scholar 

  7. Worrell E, Phylipsen D, Einstein D, Martin N (2000) Energy use and energy intensity of the U.S. Chemical Industry, E. O. Lawrence Berkeley National Laboratory, Publication number LBNL-44313

    Google Scholar 

  8. Hoffman B, Lukoyanov D, Dean DR, Seefeldt LC (2013) Acc Chem Res 46:587

    CAS  CrossRef  Google Scholar 

  9. van der Ham CJM, Koper MTM, Hetterscheid DGH (2014) Chem Soc Rev 43:5183

    CrossRef  Google Scholar 

  10. Appl M (2011) In: Bellussi G et al (eds) Ullmann’s encyclopedia of industrial chemistry. 7th edn, vol 3. Wiley-VCH, Weinheim, p 139

    Google Scholar 

  11. Chagas AP (2007) Quim Nova 30:240

    CAS  CrossRef  Google Scholar 

  12. Shlögl R (2003) Angew Chem Int Ed 42:2004

    CrossRef  Google Scholar 

  13. Allen AD, Senoff CV (1965) Chem Commun 621

    Google Scholar 

  14. Chatt J, Dilworth JR, Richards RL (1978) Chem Rev 78:589

    CAS  CrossRef  Google Scholar 

  15. Chatt J, Richards RL (1982) J Organomet Chem 239:65

    CAS  CrossRef  Google Scholar 

  16. Schrock RR (2005) Acc Chem Res 38:955

    CAS  CrossRef  Google Scholar 

  17. Pickett CJ, Ryder KS, Talarmin J (1986) J Chem Soc Dalton Trans 1453

    Google Scholar 

  18. Pickett CJ, Talarmin J (1985) Nature 317:652

    CAS  CrossRef  Google Scholar 

  19. Shilov AE (2003) Russ Chem Bull 52:2555

    CAS  CrossRef  Google Scholar 

  20. Bazhenova TA, Shilov AE (1995) Coord Chem Rev 144:69

    CAS  CrossRef  Google Scholar 

  21. Hill PJ, Doyle LR, Crawford AD, Myers WK, Ashley AE (2016) J Am Chem Soc 138:13521

    CAS  CrossRef  Google Scholar 

  22. Yandulov D, Schrock RR (2003) Science 301:76

    CAS  CrossRef  Google Scholar 

  23. Arashiba K, Miyake Y, Nishibayashi Y (2011) Nat Chem 3:120

    CAS  CrossRef  Google Scholar 

  24. Kuriyama S, Arashiba K, Nakajima K, Tanaka H, Kamaru N, Yoshizawa K, Nishibayashi Y (2014) J Am Chem Soc 136:9719

    CAS  CrossRef  Google Scholar 

  25. Kuriyama S, Arashiba K, Nakajima K, Tanaka H, Yoshizawa K, Nishibayashi Y (2015) Chem Sci 6:3940

    CAS  CrossRef  Google Scholar 

  26. Ung G, Peters JC (2015) Angew Chem Int Ed 54:532

    CAS  Google Scholar 

  27. Creutz SE, Peters JC (2014) J Am Chem Soc 136:1105

    CAS  CrossRef  Google Scholar 

  28. Anderson JS, Rittle J, Peters JC (2013) Nature 501:84

    CAS  CrossRef  Google Scholar 

  29. Kuriyama S, Arashiba K, Nakajima K, Matsuo Y, Tanaka H, Ishii K, Yoshizawa K, Nishibayashi Y (2016) Nat Commun 7:12181

    CAS  CrossRef  Google Scholar 

  30. Pappas I, Chirik PJ (2016) J Am Chem Soc 138:13379

    CAS  CrossRef  Google Scholar 

  31. Warren JJ, Tronic TA, Mayer JM (2010) Chem Rev 110:6961

    CAS  CrossRef  Google Scholar 

  32. Pappas I, Chirik PJ (2015) J Am Chem Soc 137:3498

    CAS  CrossRef  Google Scholar 

  33. Lindley BM, Appel AM, Krogh-Jespersen K, Mayer JM, Miller AJM (2016) ACS Energy Lett 1:698

    Google Scholar 

  34. Munisamy T, Schrock RR (2012) Dalton Trans 41:130

    CAS  CrossRef  Google Scholar 

  35. Nishibayashi Y (2015) Inorg Chem 54:9234

    CAS  CrossRef  Google Scholar 

  36. Cheng JP, Lu Y, Zhu XQ, Sun Y, Bi F, He J (2000) J Org Chem 65:3853

    Google Scholar 

  37. Thimm W, Gradert C, Broda H, Wennmohs F, Neese F, Tuczek F (2015) Inorg Chem 54:9248

    CAS  CrossRef  Google Scholar 

  38. Mader EA, Davidson ER, Mayer JM (2007) J Am Chem Soc 129:5153

    CAS  CrossRef  Google Scholar 

  39. Sorai M, Seki S (1974) J Phys Chem Solids 35:555

    CAS  CrossRef  Google Scholar 

  40. Bordwell F, Chang JP, Harrelson JA (1988) J Am Chem Soc 110:1229

    CAS  CrossRef  Google Scholar 

  41. Tilset M (2001) In: Balzani V (ed) Electron transfer in chemistry. Wiley-VCH, Weinheim, p 677

    Google Scholar 

  42. Parker VD (1992) J Am Chem Soc 114:7458

    CAS  CrossRef  Google Scholar 

  43. Takahashi T, Mizobe Y, Sato M, Uchida Y, Hidai M (1980) J Am Chem Soc 102:7461

    CAS  CrossRef  Google Scholar 

  44. O’Donoghue MB, Davis WM, Schrock RR (1998) Inorg Chem 37:5149

    CrossRef  Google Scholar 

  45. Chew KC, Clegg W, Coles MP, Elsegood MRJ, Gibson VC, White AJP, Williams DJ (1999) J Chem Soc Dalton Trans 2633

    Google Scholar 

  46. Hsieh TC, Gebreyes K, Zubieta J (1984) J Chem Soc Chem Commun 1172

    Google Scholar 

  47. Hsieh TC, Nicholson T, Zubieta J (1988) Inorg Chem 27:241

    CAS  CrossRef  Google Scholar 

  48. Bossard GE, Busby DC, Chang M, George TA, Iske Jr SDA (1980) J Am Chem Soc 102:1001

    CAS  CrossRef  Google Scholar 

  49. Yandulov DV, Schrock RR (2005) Inorg Chem 44:1103

    CAS  CrossRef  Google Scholar 

  50. Rodima T, Kaljurand I, Pihl A, Mäemets V, Leito I, Koppel IA (2002) J Org Chem 67:1873

    CAS  CrossRef  Google Scholar 

  51. Hoffmann BM, Dean DR, Seefeldt LC (2009) Acc Chem Res 42:609

    CrossRef  Google Scholar 

  52. Hidai M, Mizobe Y (1995) Chem Rev 95:1115

    CAS  CrossRef  Google Scholar 

  53. Bezdek MJ, Chirik PJ (2016) Dalton Trans 45:15922

    CAS  CrossRef  Google Scholar 

  54. Busby DC, George TA, Iske SDA, Wagner SD (1981) Inorg Chem 20:22

    CAS  CrossRef  Google Scholar 

  55. Schrock RR (1990) Acc Chem Res 23:158

    Google Scholar 

  56. Duncan AP, Bergman RG (2002) Chem Rec 2:431

    Google Scholar 

  57. Hazari N, Mountford P (2005) Acc Chem Res 38:839

    Google Scholar 

  58. Mindiola DJ (2006) Acc Chem Res 39:813

    Google Scholar 

  59. Sharp PR (1999) Comments Inorg Chem 21:85

    Google Scholar 

  60. Berry JF (2009) Comments Inorg Chem 30:28

    Google Scholar 

  61. Scepaniak JJ, Young JA, Bontchev RP, Smith JM (2009) Angew Chem Int Ed 48:3158

    CAS  CrossRef  Google Scholar 

  62. Scheibel MG, Abbenseth J, Kinauer M, Heinemann FW, Würtele C, de Bruin B, Schneider S (2015) Inorg Chem 54:9290

    CAS  CrossRef  Google Scholar 

  63. Cowley RE, Holland PL (2012) Inorg Chem 51:8352

    CAS  CrossRef  Google Scholar 

  64. Iluc VM, Miller AJM, Anderson JS, Monreal MJ, Mehn MP, Hillhouse GL (2011) J Am Chem Soc 133:13055

    CAS  CrossRef  Google Scholar 

  65. Iluc VM, Hillhouse GL (2010) J Am Chem Soc 132:15148

    CAS  CrossRef  Google Scholar 

  66. Cowley RE, Bontchev RP, Sorrell J, Sarracino O, Feng Y, Wang H, Smith JM (2007) J Am Chem Soc 129:2424

    CAS  CrossRef  Google Scholar 

  67. Nieto I, Ding F, Bontchev RP, Wang H, Smith JM (2008) J Am Chem Soc 130:2716

    CAS  CrossRef  Google Scholar 

  68. Bart SC, Lobkovsky E, Bill E, Chirik PJ (2006) J Am Chem Soc 128:5302

    CAS  CrossRef  Google Scholar 

  69. Milsmann C, Semproni SP, Chirik PJ (2014) J Am Chem Soc 136:12099

    CAS  CrossRef  Google Scholar 

  70. Werner A (1893) Z Anorg Chem 3:267

    Google Scholar 

  71. Peyrone M (1844) Ann Chem Pharm 51:1

    Google Scholar 

  72. Ford PC, Rudd DFP, Gaunder R, Taube H (1968) J Am Chem Soc 90:1187

    Google Scholar 

  73. Hu Y, Norton JR (2014) J Am Chem Soc 136:5938

    CAS  CrossRef  Google Scholar 

  74. Bezdek MJ, Guo S, Chirik PJ (2016) Science 354:730

    CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J. Chirik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bezdek, M.J., Pappas, I., Chirik, P.J. (2017). Determining and Understanding N-H Bond Strengths in Synthetic Nitrogen Fixation Cycles. In: Nishibayashi, Y. (eds) Nitrogen Fixation. Topics in Organometallic Chemistry, vol 60. Springer, Cham. https://doi.org/10.1007/3418_2016_8

Download citation