Skip to main content

Computational Approach to Nitrogen Fixation on Molybdenum–Dinitrogen Complexes

Part of the Topics in Organometallic Chemistry book series (TOPORGAN,volume 60)

Abstract

The transformation of N2 into NH3 (nitrogen fixation) on transition metal complexes generally involves complicated elementary reaction steps and a number of possible reaction intermediates because at least six pairs of proton and electron (or six hydrogen atoms) must take part in this process. Mechanistic details of nitrogen fixation will be disclosed by close liaison between theory and experiment. In this chapter, recent advances in the mechanistic understanding of the catalytic transformation of N2 to NH3 on mono- and dinuclear Mo–N2 complexes are overviewed from a theoretical perspective. In particular, catalytic mechanisms of nitrogen fixation by dinitrogen-bridged dimolybdenum complexes bearing pincer ligands are discussed in detail based on density-functional-theory calculations corroborated by experimental findings.

Keywords

  • Catalytic mechanism
  • Molybdenum
  • Nitrogen fixation
  • Pincer ligand
  • Theoretical calculation

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/3418_2016_7
  • Chapter length: 26 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-57714-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Scheme 1
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 3
Scheme 4
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. Burgess BK, Lowe DJ (1996) Chem Rev 96:2983–3011

    CAS  CrossRef  Google Scholar 

  2. Einsle O, Tezcan FA, Andrade SLA, Schmid B, Yoshida M, Howard JB, Rees DC (2002) Science 297:1696–1700

    CAS  CrossRef  Google Scholar 

  3. Spatzal T, Aksoyoglu M, Zhang L, Andrade SLA, Schleicher E, Weber S, Rees DC, Einsle O (2011) Science 334:940

    CAS  CrossRef  Google Scholar 

  4. Lancaster KM, Roemelt M, Ettenhuber P, Hu Y, Ribbe MW, Neese F, Bergmann U, DeBeer S (2011) Science 334:974–977

    CAS  CrossRef  Google Scholar 

  5. Hoffman BM, Lukoyanov D, Yang Z-Y, Dean DR, Seefeldt LC (2014) Chem Rev 114:4041–4062

    CAS  CrossRef  Google Scholar 

  6. Liu H (2013) Ammonia synthesis catalysts: innovation and practice. Chemical Industry Press & World Scientific, Singapore

    CrossRef  Google Scholar 

  7. Allen AD, Senoff CV (1965) Chem Commun 24:621–622

    Google Scholar 

  8. Chatt J, Dilworth JR, Richards RL (1978) Chem Rev 78:589–625

    CAS  CrossRef  Google Scholar 

  9. Hidai M, Mizobe Y (1995) Chem Rev 95:1115–1133

    CAS  CrossRef  Google Scholar 

  10. MacKay BA, Fryzuk MD (2004) Chem Rev 104:385–401

    CAS  CrossRef  Google Scholar 

  11. Nishibayashi Y (2012) Dalton Trans 41:7447–7453

    CAS  CrossRef  Google Scholar 

  12. Tanabe Y, Nishibayashi Y (2013) Coord Chem Rev 257:2551–2564

    CAS  CrossRef  Google Scholar 

  13. Nishibayashi Y (2015) Inorg Chem 54:9234–9247

    CAS  CrossRef  Google Scholar 

  14. Khoenkhoen N, de Bruin B, Reek JNH, Dzik WI (2015) Eur J Inorg Chem 567–598

    Google Scholar 

  15. Tanaka H, Nishibayashi Y, Yoshizawa K (2016) Acc Chem Res 49:987–995

    CAS  CrossRef  Google Scholar 

  16. Yandulov DV, Schrock RR (2003) Science 301:76–78

    CAS  CrossRef  Google Scholar 

  17. Arashiba K, Miyake Y, Nishibayashi Y (2011) Nat Chem 3:120–125

    CAS  CrossRef  Google Scholar 

  18. Anderson JS, Rittle J, Peters JC (2013) Nature 501:84–87

    CAS  CrossRef  Google Scholar 

  19. Del Castillo TJ, Thompson NB, Peters JC (2016) J Am Chem Soc 138:5341–5350

    CAS  CrossRef  Google Scholar 

  20. Ung G, Peters JC (2015) Angew Chem Int Ed 54:532–535

    CAS  Google Scholar 

  21. Arashiba K, Kinoshita E, Kuriyama S, Eizawa A, Nakajima K, Tanaka H, Yoshizawa K, Nishibayashi Y (2015) J Am Chem Soc 137:5666–5669

    CAS  CrossRef  Google Scholar 

  22. Kuriyama S, Arashiba K, Nakajima K, Matsuo Y, Tanaka H, Ishii K, Yoshizawa K, Nishibayashi Y (2016) Nat Commun 7:12181

    CAS  CrossRef  Google Scholar 

  23. Del Castillo TJ, Thompson NB, Suess DLM, Ung G, Peters JC (2015) Inorg Chem 54:9256–9262

    CAS  CrossRef  Google Scholar 

  24. Kuriyama S, Arashiba K, Tanaka H, Matsuo Y, Nakajima K, Yoshizawa K, Nishibayashi Y (2016) Angew Chem Int Ed 55:14291–14295

    CAS  CrossRef  Google Scholar 

  25. Hill PJ, Doyle LR, Crawford AD, Myers WK, Ashley AE (2016) J Am Chem Soc 138:13521–13524

    CAS  CrossRef  Google Scholar 

  26. Schrock RR (2008) Angew Chem Int Ed 47:5512–5522

    CAS  CrossRef  Google Scholar 

  27. Yandulov DV, Schrock RR (2005) Inorg Chem 44:1103–1117

    CAS  CrossRef  Google Scholar 

  28. Kinney RA, McNaughton RL, Chin JM, Schrock RR, Hoffman BM (2011) Inorg Chem 50:418–420

    CAS  CrossRef  Google Scholar 

  29. Munisamy T, Schrock RR (2012) Dalton Trans 41:130–137

    CAS  CrossRef  Google Scholar 

  30. Cao Z, Zhou Z, Wan H, Zhang Q (2005) Int J Quantum Chem 103:344–353

    CAS  CrossRef  Google Scholar 

  31. Studt F, Tuczek F (2005) Angew. Chem Int Ed 44:5639–5642

    CAS  CrossRef  Google Scholar 

  32. Magistrato A, Robertazzi A, Carloni P (2007) J Chem Theory Comput 3:1708–1720

    CAS  CrossRef  Google Scholar 

  33. Reiher M, Le Guennic B, Kirchner B (2005) Inorg Chem 44:9640–9642

    CAS  CrossRef  Google Scholar 

  34. Le Guennic B, Kirchner B, Reiher M (2005) Chem Eur J 11:7448–7460

    CAS  CrossRef  Google Scholar 

  35. Schenk S, Le Guennic B, Kirchner B, Reiher M (2008) Inorg Chem 47:3634–3650

    CAS  CrossRef  Google Scholar 

  36. Schenk S, Kirchner B, Reiher M (2009) Chem Eur J 15:5073–5082

    CAS  CrossRef  Google Scholar 

  37. Schenk S, Reiher M (2009) Inorg Chem 48:1638–1648

    CAS  CrossRef  Google Scholar 

  38. Bergeler M, Simm GN, Proppe J, Reiher M (2015) J Chem Theory Comput 11:5712–5722

    CAS  CrossRef  Google Scholar 

  39. Tian Y-H, Pierpont AW, Batista ER (2014) Inorg Chem 53:4177–4183

    CAS  CrossRef  Google Scholar 

  40. Tanaka H, Arashiba K, Kuriyama S, Sasada A, Nakajima K, Yoshizawa K, Nishibayashi Y (2014) Nat Commun 5:3737

    Google Scholar 

  41. Reiher M, Salomon O, Hess BA (2001) Theor Chem Acc 107:48–55

    CAS  CrossRef  Google Scholar 

  42. Reiher M (2002) Inorg Chem 41:6928–6935

    CAS  CrossRef  Google Scholar 

  43. Schrock RR (2005) Acc Chem Res 38:955–962

    CAS  CrossRef  Google Scholar 

  44. Thimm W, Gradert C, Broda H, Wennmohs F, Neese F, Tuczek F (2015) Inorg Chem 54:9248–9255

    CAS  CrossRef  Google Scholar 

  45. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    CAS  CrossRef  Google Scholar 

  46. Deeth RJ, Field CN (1994) J Chem Soc Dalton Trans 1943–1948

    Google Scholar 

  47. Studt F, Tuczek F (2006) J Comput Chem 27:1278–1291

    CAS  CrossRef  Google Scholar 

  48. Tanaka H, Ohsako F, Seino H, Mizobe Y, Yoshizawa K (2010) Inorg Chem 49:2464–2470

    CAS  CrossRef  Google Scholar 

  49. Kuriyama S, Arashiba K, Nakajima K, Tanaka H, Kamaru N, Yoshizawa K, Nishibayashi Y (2014) J Am Chem Soc 136:9719–9731

    CAS  CrossRef  Google Scholar 

  50. Eizawa A, Arashiba K, Tanaka H, Kuriyama S, Matsuo Y, Nakajima K, Yoshizawa K, Nishibayashi Y (2017) Nat Commun 8:14874

    Google Scholar 

  51. Hopkinson MN, Richter C, Schedler M, Glorius F (2014) Nature 510:485–496

    CAS  CrossRef  Google Scholar 

  52. Trnka TM, Grubbs RH (2001) Acc Chem Res 34:18–29

    CAS  CrossRef  Google Scholar 

  53. Ohki Y, Seino H (2016) Dalton Trans 45:874–880

    CAS  CrossRef  Google Scholar 

  54. Comas-Vives A, Harvey JN (2011) Eur J Inorg Chem 5025–5035

    Google Scholar 

  55. Nelson DJ, Nolan SP (2013) Chem Soc Rev 42:6723–6753

    CAS  CrossRef  Google Scholar 

  56. Mayer I (1983) Chem Phys Lett 97:270–274

    CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hiromasa Tanaka or Kazunari Yoshizawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Tanaka, H., Yoshizawa, K. (2017). Computational Approach to Nitrogen Fixation on Molybdenum–Dinitrogen Complexes. In: Nishibayashi, Y. (eds) Nitrogen Fixation. Topics in Organometallic Chemistry, vol 60. Springer, Cham. https://doi.org/10.1007/3418_2016_7

Download citation