Skip to main content

Catalytic Transformations of Molecular Dinitrogen by Iron and Cobalt–Dinitrogen Complexes as Catalysts

Part of the Topics in Organometallic Chemistry book series (TOPORGAN,volume 60)

Abstract

This chapter describes the recent advances of the iron and cobalt-catalyzed transformations of molecular dinitrogen into not only silylamine but also ammonia and hydrazine under mild reaction conditions. In both reaction systems, reaction pathways are proposed based on the experimental and theoretical studies on iron and cobalt–dinitrogen complexes.

Keywords

  • Ammonia
  • Catalyst
  • Cobalt
  • Dinitrogen
  • Iron
  • Reduction
  • Silylamine

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/3418_2016_5
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-57714-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

References

  1. Liu H (2013) Ammonia synthesis catalysts. Chemical Industry Press & World Scientific, Singapore & Beijing

    CrossRef  Google Scholar 

  2. Hoffman BM, Lukoyanov D, Yang ZH, Dean DR, Seefeldt LC (2014) Chem Rev 114:4041

    CAS  CrossRef  Google Scholar 

  3. Spatzal T, Aksoyoglu M, Zhang L, Andrade SLA, Schleicher E, Weber S, Rees DC, Einsle O (2011) Science 334:940

    CAS  CrossRef  Google Scholar 

  4. Lancaster KM, Roemelt M, Ettenhuber P, Hu Y, Ribbe MW, Neese F, Bergmann U, DeBeer S (2011) Science 334:974

    CAS  CrossRef  Google Scholar 

  5. Lancaster KM, Hu Y, Bergmann U, Ribbe MW, DeBeer S (2013) J Am Chem Soc 135:610

    CAS  CrossRef  Google Scholar 

  6. Wiig JA, Hu Y, Lee CC, Ribbe MW (2012) Science 337:1672

    CAS  CrossRef  Google Scholar 

  7. Köthe C, Limberg C (2015) Z Anorg Allg Chem 641:18

    CrossRef  Google Scholar 

  8. Khoenkhoen N, de Bruin B, Reek JNH, Dzik WI (2015) Eur J Inorg Chem 567

    Google Scholar 

  9. Nishibayashi Y (2015) Inorg Chem 54:9234

    CAS  CrossRef  Google Scholar 

  10. Tanabe Y, Nishibayashi Y (2016) Chem Rec 16:1549

    CAS  CrossRef  Google Scholar 

  11. Crossland JL, Tyler DR (2010) Coord Chem Rev 254:1883

    CAS  CrossRef  Google Scholar 

  12. Hazari N (2010) Chem Soc Rev 39:4044

    CAS  CrossRef  Google Scholar 

  13. MacLeod KC, Holland PL (2013) Nat Chem 5:559

    CAS  CrossRef  Google Scholar 

  14. Fryzuk MD (2013) Chem Commun 49:4866

    CAS  CrossRef  Google Scholar 

  15. Yamamoto A, Kitazume S, Pu LS, Ikeda S (1967) Chem Commun 79

    Google Scholar 

  16. Sacco A, Aresta M (1968) Chem Commun 1223

    Google Scholar 

  17. Tyler DR (2015) Z Anorg Allg Chem 641:31

    CAS  CrossRef  Google Scholar 

  18. Shiina K (1972) J Am Chem Soc 94:9266

    CAS  CrossRef  Google Scholar 

  19. Kawaguchi M, Hamaoka S, Mori M (1993) Tetrahedron Lett 34:6907

    CAS  CrossRef  Google Scholar 

  20. Mori M (2004) J Organomet Chem 689:4210

    CAS  CrossRef  Google Scholar 

  21. Komori K, Oshita H, Mizobe Y, Hidai M (1989) J Am Chem Soc 111:1939

    CAS  CrossRef  Google Scholar 

  22. Komori K, Sugiura S, Mizobe Y, Yamada M, Hidai M (1989) Bull Chem Soc Jpn 62:2953

    CAS  CrossRef  Google Scholar 

  23. Oshita H, Mizobe Y, Hidai M (1993) J Organomet Chem 456:213

    CAS  CrossRef  Google Scholar 

  24. Tanaka H, Sasada A, Kouno T, Yuki M, Miyake Y, Nakanishi H, Nishibayashi Y, Yoshizawa K (2011) J Am Chem Soc 133:3498

    CAS  CrossRef  Google Scholar 

  25. Yuki M, Tanaka H, Sasaki K, Miyake Y, Yoshizawa K, Nishibayashi Y (2012) Nat Commun 3:1254

    CrossRef  Google Scholar 

  26. Ung G, Peters JC (2015) Angew Chem Int Ed 2015:532

    Google Scholar 

  27. Moret ME, Peters JC (2011) Angew Chem Int Ed 50:2063

    CAS  CrossRef  Google Scholar 

  28. Anderson JS, Rittle J, Peters JC (2013) Nature 501:84

    CAS  CrossRef  Google Scholar 

  29. Del Castillo TJ, Thompson NB, Peters JC (2016) J Am Chem Soc 138:5341

    CAS  CrossRef  Google Scholar 

  30. Creutz SE, Peters JC (2014) J Am Chem Soc 136:1105

    CAS  CrossRef  Google Scholar 

  31. Lee Y, Mankad NP, Peres JC (2010) Nat Chem 2:558

    CAS  CrossRef  Google Scholar 

  32. Rittle J, McCrory CCL, Peters JC (2014) J Am Chem Soc 136:13853

    CAS  CrossRef  Google Scholar 

  33. Creutz SE, Peters JC (2015) J Am Chem Soc 137:7310

    CAS  CrossRef  Google Scholar 

  34. Anderson JS, Moret ME, Peters JC (2013) J Am Chem Soc 135:534

    CAS  CrossRef  Google Scholar 

  35. Anderson JS, Cutsail III GE, Rittle J, Connor BA, Gunderson WA, Zhang L, Hoffman BM, Peters JC (2015) J Am Chem Soc 137:7803

    CAS  CrossRef  Google Scholar 

  36. Rittle J, Peters JC (2016) J Am Chem Soc 138:4243

    CAS  CrossRef  Google Scholar 

  37. Kuriyama S, Arashiba K, Nakajima K, Matsuo Y, Tanaka H, Ishii K, Yoshizawa K, Nishibayashi Y (2016) Nat Commun 7:12181

    CAS  CrossRef  Google Scholar 

  38. Yamamoto A, Miura Y, Ito T, Chen HL, Iri K, Ozawa F, Miki K, Sei T, Tanaka N, Kasai N (1983) Organometallics 2:1429

    CAS  CrossRef  Google Scholar 

  39. Siedschlag RB, Bernales V, Vogiatzis KD, Planas N, Clouston LJ, Bill E, Gagliardi L, Lu CC (2015) J Am Chem Soc 137:4638

    CAS  CrossRef  Google Scholar 

  40. Imayoshi R, Tanaka H, Matsuo Y, Yuki M, Nakajima K, Yoshizawa K, Nishibayashi Y (2015) Chem Eur J 21:8905

    CAS  CrossRef  Google Scholar 

  41. Del Castillo TJ, Thompson NB, Suess DLM, Ung G, Peters JC (2015) Inorg Chem 54:9256

    CAS  CrossRef  Google Scholar 

  42. Kuriyama S, Arashiba K, Tanaka H, Matsuo Y, Nakajima K, Yoshizawa K, Nishibayashi Y (2016) Angew Chem Int Ed 55:14291

    CAS  CrossRef  Google Scholar 

  43. Hill PJ, Doyle LR, Crawford AD, Myers WK, Ashley AE (2016) J Am Chem Soc 138: 13521

    Google Scholar 

  44. Imayoshi R, Nakajima K, Nishibayashi Y (2017) Chem Lett 46:466

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiaki Nishibayashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kuriyama, S., Nishibayashi, Y. (2017). Catalytic Transformations of Molecular Dinitrogen by Iron and Cobalt–Dinitrogen Complexes as Catalysts. In: Nishibayashi, Y. (eds) Nitrogen Fixation. Topics in Organometallic Chemistry, vol 60. Springer, Cham. https://doi.org/10.1007/3418_2016_5

Download citation