Skip to main content

Dinitrogen Fixation by Transition Metal Hydride Complexes

Part of the Topics in Organometallic Chemistry book series (TOPORGAN,volume 60)

Abstract

This chapter describes the activation of dinitrogen by various transition metal hydride complexes. A number of mononuclear transition metal hydride complexes can incorporate dinitrogen, but they are usually difficult to induce N–N bond cleavage. In contrast, multimetallic hydride complexes can split and hydrogenate dinitrogen through cooperation of the multiple metal hydrides. In this transformation, the hydride ligands serve as the source of both electron and proton, thus enabling the cleavage and hydrogenation of dinitrogen without extra reducing agents and proton sources. Generally, the reactivity of the metal hydride complexes is significantly influenced by their composition (nuclearity) and metal/ligand combination.

Keywords

  • Dinitrogen cleavage
  • Hydride
  • Hydrogenation
  • Multimetallic
  • Nitride

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/3418_2016_3
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-57714-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26

References

  1. Luo YR (2007) Comprehensive handbook of chemical bond energies. CRC Press, Boca Raton, FL

    CrossRef  Google Scholar 

  2. Zhan CG, Nichols JA, Dixon DA (2003) Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: molecular properties from density functional theory orbital energies. J Phys Chem A 107:4184–4195

    CAS  CrossRef  Google Scholar 

  3. Hoffman BM et al (2014) Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem Rev 114:4041–4062

    CAS  CrossRef  Google Scholar 

  4. Hoffman BM et al (2013) Nitrogenase: a draft mechanism. Acc Chem Res 46:587–595

    CAS  CrossRef  Google Scholar 

  5. Lukoyanov D et al (2015) Identification of a key catalytic intermediate demonstrates that nitrogenase is activated by the reversible exchange of N2 for H2. J Am Chem Soc 137:3610–3615

    CAS  CrossRef  Google Scholar 

  6. Yang ZY et al (2013) On reversible H2 loss upon N2 binding to FeMo-cofactor of nitrogenase. Proc Natl Acad Sci U S A 110:16327–16332

    CAS  CrossRef  Google Scholar 

  7. Ertl G (2008) Reactions at surfaces: from atoms to complexity (nobel lecture). Angew Chem Int Ed Engl 47:3524–3535

    CAS  CrossRef  Google Scholar 

  8. Honkala K et al (2005) Ammonia synthesis from first-principles calculations. Science 307:555–558

    CAS  CrossRef  Google Scholar 

  9. Ertl G (1980) Surface science and catalysis – studies on the mechanism of ammonia synthesis: the P.H. Emmett award address. Catal Rev Sci Eng 21:201–223

    CAS  CrossRef  Google Scholar 

  10. Rodriguez MM et al (2011) N2 reduction and hydrogenation to ammonia by a molecular iron-potassium complex. Science 334:780–783

    CAS  CrossRef  Google Scholar 

  11. Logadóttir Á, Nørskov JK (2003) Ammonia synthesis over a Ru(0001) surface studied by density functional calculations. J Catal 220:273–779

    CrossRef  Google Scholar 

  12. Walter MD (2016) Recent advances in transition metal-catalyzed dinitrogen activation. Adv Organomet Chem 65:261–377

    CrossRef  Google Scholar 

  13. Yandulov DV, Schrock RR (2003) Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Science 301:76–78

    CAS  CrossRef  Google Scholar 

  14. Arashiba K, Miyake Y, Nishibayashi Y (2011) A molybdenum complex bearing PNP-type pincer ligands leads to the catalytic reduction of dinitrogen into ammonia. Nat Chem 3:120–125

    CAS  CrossRef  Google Scholar 

  15. Anderson JS, Rittle J, Peters JC (2013) Catalytic conversion of nitrogen to ammonia by an iron model complex. Nature 501:84–87

    CAS  CrossRef  Google Scholar 

  16. Ballmann J, Munhá RF, Fryzuk MD (2010) The hydride route to the preparation of dinitrogen complexes. Chem Commun 46:1013–1025

    CAS  CrossRef  Google Scholar 

  17. Allen AD, Senoff CV (1965) Nitrogenopentammineruthenium(II) complexes. Chem Commun (London) 621–622

    Google Scholar 

  18. Yamamoto A et al (1967) Study of the fixation of nitrogen. Isolation of tris(triphenylphosphine)cobalt complex co-ordinated with molecular nitrogen. Chem Commun (London) 79–80

    Google Scholar 

  19. Yamamoto A et al (1967) Reversible combination of molecular nitrogen with a cobalt complex. Exchange reactions of nitrogen–tris(tripheny1phosphine)cobalt with hydrogen, ethylene, and ammonia. J Am Chem Soc 89:3071

    CAS  CrossRef  Google Scholar 

  20. Sacco A, Rossi M (1967) Hydride and nitrogen complexes of cobalt. Chem Commun (London) 316

    Google Scholar 

  21. Yamamoto A et al (1983) Preparation, X-ray molecular structure determination, and chemical properties of dinitrogen-coordinated cobalt complexes containing triphenylphosphine ligands and alkali metal or magnesium. Protonation of the coordinated dinitrogen to ammonia and hydrazine. Organometallics 2:1429–1436

    CAS  CrossRef  Google Scholar 

  22. Yoshida T et al (1979) Preparations and reactions of some hydridodinitrogentrialkylphosphine complexes of rhodium(I). The structure of a dinitrogen-bridged rhodium(I) dimer, [RhH(P(i-Pr)3)2]2(μ-N2). J Organomet Chem 181:183–201

    CAS  CrossRef  Google Scholar 

  23. Yoshida T, Okano T, Otsuka S (1978) Novel three-co-ordinate rhodium(I) hydrido-compounds, [RhH(PBut 3)2] and [RhH{P(cyclohexyl)3}2]. J Chem Soc Chem Commun 855–856

    Google Scholar 

  24. Sacco A, Aresta M (1968) Nitrogen fixation: hydrido- and hydrido-nitrogen-complexes of iron(II). Chem Commun (London) 1223–1224

    Google Scholar 

  25. Aresta M et al (1971) Hydrido-complexes of iron(IV) and iron(II). Inorg Chim Acta 5:115–118

    CAS  CrossRef  Google Scholar 

  26. Aresta M et al (1971) Nitrogen fixation. II. Dinitrogen-complexes of iron. Inorg Chim Acta 5:203–206

    CAS  CrossRef  Google Scholar 

  27. Van Der Sluys LS et al (1990) An attractive “cis-effect” of hydride on neighbor ligands: experimental and theoretical studies on the structure and intramolecular rearrangements of Fe(H)22-H2)(PEtPh2)3. J Am Chem Soc 112:4831–4841

    CAS  CrossRef  Google Scholar 

  28. Hallman PS, McGarvey BR, Wilkinson G (1968) The preparation and reactions of hydridochlorotris(triphenylphosphine)ruthenium(II) including homogeneous catalytic hydrogenation of alk-1-enes. J Chem Soc A 3143–3150

    Google Scholar 

  29. Knoth WH (1972) Dihydrido(dinitrogen)tris(triphenylphosphine)ruthenium. Dinitrogen bridging ruthenium and boron. J Am Chem Soc 94:104–109

    CAS  CrossRef  Google Scholar 

  30. Yamamoto A, Kitazume S, Ikeda S (1968) Triphenylphosphine complexes of ruthenium and rhodium. Reversible combinations of molecular nitrogen and hydrogen with the ruthenium complex. J Am Chem Soc 90:1089–1090

    CAS  CrossRef  Google Scholar 

  31. Abdur-Rashid K et al (2000) Synthesis and characterization of RuH2(H2)2(PiPr3)2 and related chemistry. Evidence for a bis(dihydrogen) structure. Organometallics 19:1652–1660

    CAS  CrossRef  Google Scholar 

  32. Prechtl MHG et al (2007) Synthesis and characterisation of nonclassical ruthenium hydride complexes containing chelating bidentate and tridentate phosphine ligands. Chem A Eur J 13:1539–1546

    CAS  CrossRef  Google Scholar 

  33. Tenorio MJ et al (1997) Hydride, dihydrogen, dinitrogen and related complexes of ruthenium containing the ligand hydrotris(pyrazolyl)borate. X-ray crystal structure of [{HB(pz)3}Ru(η2-H2)(dippe)][BPh4] (dippe = 1,2-bis(diisopropylphosphino)ethane). Inorg Chim Acta 259:77–84

    CrossRef  Google Scholar 

  34. Hills A et al (1990) Complexes of tertiary phosphines with iron(II) and dinitrogen, dihydrogen, and other small molecules. J Organomet Chem 391:C41–C44

    CAS  CrossRef  Google Scholar 

  35. Leigh GJ, Jimenez-Tenorio M (1991) Exchange of dinitrogen between iron and molybdenum centers and the reduction of dinitrogen bound to iron: implications for the chemistry of nitrogenases. J Am Chem Soc 113:5862–5863

    CAS  CrossRef  Google Scholar 

  36. Hills A et al (1993) Bis[1,2-bis(dimethylphosphino)ethane]dihydrogenhydridoiron(II) tetraphenylborate as a model for the function of nitrogenases. J Chem Soc Dalton Trans 3041–3049

    Google Scholar 

  37. Hall DA, Leigh GJ (1996) Reduction of dinitrogen bound at an iron(0) centre. J Chem Soc Dalton Trans 3539–3541

    Google Scholar 

  38. Gilbertson JD, Szymczak NK, Tyler DR (2004) H2 activation in aqueous solution: formation of trans-[Fe(DMeOPrPE)2H(H2)]+ via the heterolysis of H2 in water. Inorg Chem 43:3341–3343

    CAS  CrossRef  Google Scholar 

  39. Gilbertson JD, Szymczak NK, Tyler DR (2005) Reduction of N2 to ammonia and hydrazine utilizing H2 as the reductant. J Am Chem Soc 127:10184–10185

    CAS  CrossRef  Google Scholar 

  40. Girolami GS et al (1985) Alkyl, hydrido, and tetrahydroaluminato complexes of manganese with 1,2-bis(dimethylphosphino)ethane (dmpe). X-ray crystal structures of Mn2(μ-C6H11)2(C6H11)2(μ-dmpe), (dmpe)2Mn(μ-H)2AlH(μ-H)2AlH(μ-H)2Mn(dmpe)2, and Li4{MnH(C2H4)[CH2(Me)PCH2CH2PMe2]2}2·2Et2O. J Chem Soc Dalton Trans 921–929

    Google Scholar 

  41. Perthuisot C, Fan M, Jones WD (1992) Catalytic thermal C–H activation with manganese complexes: evidence for η2-H2 coordination in a neutral manganese complex and its role in C–H activation. Organometallics 11:3622–3629

    CAS  CrossRef  Google Scholar 

  42. Merwin RK et al (2004) Synthesis and characterization of CpMn(dfepe)(L) complexes (dfepe = (C2F5)2PCH2CH2P(C2F5)2; L = CO, H2, N2): an unusual example of a dihydride to dihydrogen photochemical conversion. Polyhedron 23:2873–2878

    CAS  CrossRef  Google Scholar 

  43. Ginsberg AP (1968) Nine-co-ordinate octahydrido(tertiary phosphine)rhenate complex anions. Chem Commun (London) 857–858

    Google Scholar 

  44. Tully ME, Ginsberg AP (1973) trans-Hydridodinitrogenbis-[1,2-bis(diphenylphosphino)ethane]rhenium(I). J Am Chem Soc 95:2042–2044

    CAS  CrossRef  Google Scholar 

  45. Bradley MG, Roberts DA, Geoffrey GL (1981) Photogeneration of reactive [ReH(diphos)2]. Its reversible coordination of CO2 and activation of aromatic C-H bonds. J Am Chem Soc 103:379–384

    CAS  CrossRef  Google Scholar 

  46. Pennella F (1971) Tetrahydrido-complexes of molybdenum. Chem Commun 158

    Google Scholar 

  47. Bell B et al (1972) Group VI tetrahydrides and stereochemical non-rigidity. J Chem Soc Chem Commun 34–35

    Google Scholar 

  48. Pierantozzi R, Geoffrey GL (1980) Photoinduced elimination of H2 from [MoH4(diphos)2] and [MoH4(PPh2Me)4]. Inorg Chem 19:1821–1822

    CAS  CrossRef  Google Scholar 

  49. Dzięgielewski JO, Grzybek R (1990) Application of the molybdenum(IV) hydride complexes in cyclohexane solutions to the radiation-catalytic reduction of molecular nitrogen. Polyhedron 9:645–651

    CrossRef  Google Scholar 

  50. Dzięgielewski JO, Małecki J, Grzybek R (1991) Radiation-catalytic reduction of molecular nitrogen with application of the tungsten(IV) hydride complexes. Polyhedron 10:1007–1012

    CrossRef  Google Scholar 

  51. Dzięgielewski JO, Małecki J (1991) The cyclic fixation and reduction of molecular nitrogen with [WH4(Ph2PCH2CH2PPh2)2] in γ-irradiated solutions. Polyhedron 10:2827–2832

    CrossRef  Google Scholar 

  52. Hidai M, Tominari K, Uchida Y (1972) Preparation and properties of dinitrogen–molybdenum complexes. J Am Chem Soc 94:110–114

    CAS  CrossRef  Google Scholar 

  53. Archer LJ, George TA (1979) Reactions of coordinated dinitrogen. 6. Displacement of coordinated dinitrogen by dihydrogen in low-valent molybdenum complexes. Inorg Chem 18:2079–2082

    CAS  CrossRef  Google Scholar 

  54. Green MLH, Silverthorn WE (1971) Arene molybdenum chemistry: some π-allyl, hydrido, and dinitrogen derivatives. Chem Commun 557–558

    Google Scholar 

  55. Nishibayashi Y, Iwai S, Hidai M (1998) Bimetallic system for nitrogen fixation: ruthenium-assisted protonation of coordinated N2 on tungsten with H2. Science 279:540–542

    CAS  CrossRef  Google Scholar 

  56. Avenier P et al (2007) Dinitrogen dissociation on an isolated surface tantalum atom. Science 317:1056–1060

    CAS  CrossRef  Google Scholar 

  57. Vol’pin ME, Shur VB (1966) Nitrogen fixation by transition metal complexes. Nature 209:1236

    CrossRef  Google Scholar 

  58. Brintzinger H (1966) Formation of ammonia by insertion of molecular nitrogen into metal-hydride bonds. I. The formation of dimeric dicyclopentadienyltitanium(III) hydride as an intermediate in the Vol’pin-Shur nitrogen-fixing system. J Am Chem Soc 88:4305–4307

    CAS  CrossRef  Google Scholar 

  59. Brintzinger H (1966) Formation of ammonia by insertion of molecular nitrogen into metal-hydride bonds. II. Di-μ-imido-bis(dicyclopentadienyltitanium(III)) as a product of the reaction between di-μ-hydrido-bis(dicyclopentadienyltitanium(III)) and molecular nitrogen. J Am Chem Soc 88:4307–4308

    CAS  CrossRef  Google Scholar 

  60. Bercaw JE (1974) Bis(pentamethylcyclopentadienyl)titanium(II) and its complexes with molecular nitrogen. J Am Chem Soc 96:5087–5095

    CAS  CrossRef  Google Scholar 

  61. Sanner RD et al (1976) Structure and magnetism of μ-dinitrogen-bis(bis(pentamethylcyclopentadienyl)titanium(II)), {(η5-C5(CH3)5)2Ti}2N2. J Am Chem Soc 98:8358–8365

    CAS  CrossRef  Google Scholar 

  62. de Wolf JM et al (1996) Bis(tetramethylcyclopentadienyl)titanium chemistry. Molecular structures of [(C5HMe4)(μ-η15-C5Me4)Ti]2 and [(C5HMe4)2Ti]2N2. Organometallics 15:4977–4983

    CrossRef  Google Scholar 

  63. MacLachlan EA, Fryzuk MD (2006) Synthesis and reactivity of side-on-bound dinitrogen metal complexes. Organometallics 25:1530–1543

    CAS  CrossRef  Google Scholar 

  64. Pool JA, Lobkovsky E, Chirik PJ (2004) Hydrogenation and cleavage of dinitrogen to ammonia with a zirconium complex. Nature 427:527–530

    CAS  CrossRef  Google Scholar 

  65. Hanna TE et al (2007) Bis(cyclopentadienyl) titanium dinitrogen chemistry: synthesis and characterization of a side-on bound haptomer. Organometallics 26:2431–2438

    CAS  CrossRef  Google Scholar 

  66. Chirik PJ, Henling LM, Bercaw JE (2001) Synthesis of singly and doubly bridged ansa-zirconocene hydrides. Formation of an unusual mixed valence trimeric hydride by reaction of H2 with {(Me2Si)25-C5H3)2}Zr(CH3)2 and generation of a dinitrogen complex by reaction of N2 with a zirconocene dihydride. Organometallics 20:534–544

    CAS  CrossRef  Google Scholar 

  67. Manriquez JM et al (1978) Reduction of carbon monoxide promoted by alkyl and hydride derivatives of permethylzirconocene. J Am Chem Soc 100:2716–2724

    CAS  CrossRef  Google Scholar 

  68. Zhang S et al (2016) A dinitrogen dicopper(I) complex via a mixed-valence dicopper hydride. Angew Chem Int Ed Engl 55:9927–9931

    CAS  CrossRef  Google Scholar 

  69. Smith JM et al (2006) Studies of low-coordinate iron dinitrogen complexes. J Am Chem Soc 128:756–769

    CAS  CrossRef  Google Scholar 

  70. Yu Y et al (2008) The reactivity patterns of low-coordinate iron–hydride complexes. J Am Chem Soc 130:6624–6638

    CAS  CrossRef  Google Scholar 

  71. Ding K, Brennessel WW, Holland PL (2009) Three-coordinate and four-coordinate cobalt hydride complexes that react with dinitrogen. J Am Chem Soc 131:10804–10805

    CAS  CrossRef  Google Scholar 

  72. Pfirrmann S et al (2009) A dinuclear nickel(I) dinitrogen complex and its reduction in single-electron steps. Angew Chem Int Ed Engl 48:3357–3361

    CAS  CrossRef  Google Scholar 

  73. Pfirrmann S et al (2009) β-Diketiminato nickel(I) complexes with very weak ligation allowing for H2 and N2 activation. Organometallics 28:6855–6860

    CAS  CrossRef  Google Scholar 

  74. Fryzuk MD et al (1997) Transformation of coordinated dinitrogen by reaction with dihydrogen and primary silanes. Science 275:1445–1447

    CAS  CrossRef  Google Scholar 

  75. Basch H, Musaev DG, Morokuma K (2000) Can the binuclear dinitrogen complex [P2N2]Zr(μ-η2-N2)Zr[P2N2] activate more than one hydrogen molecule? A theoretical study. Organometallics 19:3393–3403

    CAS  CrossRef  Google Scholar 

  76. Pool JA, Bernskoetter WH, Chirik PJ (2004) On the origin of dinitrogen hydrogenation promoted by [(η5-C5Me4H)2Zr]2 2 22-N2). J Am Chem Soc 126:14326–14327

    CAS  CrossRef  Google Scholar 

  77. Bernskoetter WH, Lobkovsky E, Chirik PJ (2005) Kinetics and mechanism of N2 hydrogenation in bis(cyclopentadienyl) zirconium complexes and dinitrogen functionalization by 1,2-addition of a saturated C–H bond. J Am Chem Soc 127:14051–14061

    CAS  CrossRef  Google Scholar 

  78. Fryzuk MD, Johnson SA, Retting SJ (1998) New mode of coordination for the dinitrogen ligand: a dinuclear tantalum complex with a bridging N2 unit that is both side-on and end-on. J Am Chem Soc 120:11024–11025

    CAS  CrossRef  Google Scholar 

  79. Fryzuk MD (2009) Side-on end-on bound dinitrogen: an activated bonding mode that facilitates functionalizing molecular nitrogen. Acc Chem Res 42:127–133

    CAS  CrossRef  Google Scholar 

  80. Fryzuk MD, MacKay BA, Patrick BO (2003) Hydrosilylation of a dinuclear tantalum dinitrogen complex: cleavage of N2 and functionalization of both nitrogen atoms. J Am Chem Soc 125:3234–3235

    CAS  CrossRef  Google Scholar 

  81. MacKay BA, Patrick BO, Fryzuk MD (2005) Hydroalumination of a dinuclear tantalum dinitrogen complex: N–N bond cleavage and ancillary ligand rearrangement. Organometallics 24:3836–3841

    CAS  CrossRef  Google Scholar 

  82. Fryzuk MD et al (2002) Hydroboration of coordinated dinitrogen: a new reaction for the N2 ligand that results in its functionalization and cleavage. Angew Chem Int Ed Engl 41:3709–3712

    CAS  CrossRef  Google Scholar 

  83. Akagi F, Matsuo T, Kawaguchi H (2007) Dinitrogen cleavage by a diniobium tetrahydride complex: formation of a nitride and its conversion into imide species. Angew Chem Int Ed Engl 46:8778–8781

    CAS  CrossRef  Google Scholar 

  84. Akagi F et al (2013) Reactions of a niobium nitride complex prepared from dinitrogen: synthesis of imide and ureate complexes and ammonia formation. Eur J Inorg Chem 3930–3936

    Google Scholar 

  85. Shima T et al (2013) Dinitrogen cleavage and hydrogenation by a trinuclear titanium polyhydride complex. Science 340:1549–1552

    CAS  CrossRef  Google Scholar 

  86. Hu S, Shima T, Hou Z (2014) Carbon–carbon bond cleavage and rearrangement of benzene by a trinuclear titanium hydride. Nature 512:413–415

    CAS  CrossRef  Google Scholar 

  87. Guru MM, Shima T, Hou Z (2016) Conversion of dinitrogen to nitriles at a multinuclear titanium framework. Angew Chem Int Ed Engl 55:12316–12320

    CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaomin Hou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Shima, T., Hou, Z. (2017). Dinitrogen Fixation by Transition Metal Hydride Complexes. In: Nishibayashi, Y. (eds) Nitrogen Fixation. Topics in Organometallic Chemistry, vol 60. Springer, Cham. https://doi.org/10.1007/3418_2016_3

Download citation