Skip to main content

Preparation of Nanomaterials in Flow at Supercritical Conditions from Coordination Complexes

  • Chapter
  • First Online:
Organometallic Flow Chemistry

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 57))

Abstract

The development of nanosciences and nanotechnologies in the twenty-first century is linked to the progresses made with the nanomaterial synthesis approaches. Control, reproducibility, scalability, and sustainability are the key issues for the design of advanced nanostructured materials. Among the synthesis methods, the supercritical fluid-based flow process presents an efficient alternative for the continuous, controlled, scalable, and sustainable synthesis of nanomaterials, especially from coordination complexes, which is the main topic of this book chapter. First, the supercritical fluids are defined and their specific properties introduced with the possibility to adjust them playing with pressure, temperature, and composition for mixtures. The case of water is also described underlining the remarkable evolution from a polar solvent in normal conditions of pressure and temperature to a nonpolar one at supercritical conditions. After, the typical supercritical flow processes of nanomaterials are technically described in details with the different elements, namely injection, mixers, reactors, and pressure regulators. This allows introducing the main operating parameters giving access to a continuous and control synthesis of nanomaterials by mastering thermodynamics, hydrodynamics, and chemistry. Coupling chemistry of coordination complexes and chemical engineering in supercritical fluids leads to the design of high-quality and unique nanostructures. This is in particular illustrated with the synthesis of nanooxides from flow supercritical sol–gel syntheses. The access to highly crystallized oxides with controlled compositions is discussed with the synthesis of BaTiO3-based materials. The supercritical route is also a versatile method. Beyond the continuous production of nanooxides, it is also possible to prepare in flow nitrides, sulfides, selenides, phosphides, …, nanocrystals (GaN, CdS, CdSe, InP, …). Adding surfactants in situ or ex situ playing with the process offers the possibility to design hybrid organic/inorganic nanoparticles with a control of the strength of the bond at the interface between the inorganic core and the organic shell. This chapter is ended with the description of supercritical coflow reactors, which allow a high level of control of the synthesis operating conditions. All the bricks are now available from a chemical engineering and coordination complex chemistry point of view to go towards multisteps and one pot processes for the continuous and sustainable design of advanced and multifunctional nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Damköhler numbers (DaII and DaIII) represent the ratio between the reaction kinetic and the mass or heat transfer, respectively. They are defined as \( {\mathrm{Da}}_{\mathrm{II}}=\frac{k\times {\mathrm{Ca}}^{n-1}\times {L_{\mathrm{c}}}^2}{D} \) and \( {\mathrm{Da}}_{\mathrm{III}}=\frac{k\times C{a}^n-{\varDelta}_rH\times {L}_{\mathrm{c}}}{\rho \times {C}_{\mathrm{p}}\times T\times v} \) with k, Ca, L c, and D being the kinetics constant, the concentration, the characteristic length, and the diffusion coefficient, respectively, for DaII and Δ r H, ρ, C p , T, and v being the reaction enthalpy, the fluid density, the fluid heat capacity, the temperature, and the fluid velocity, respectively, for Da III.

References

  1. Coe S, Woo WK, Bawendi M, Bulovic V (2002) Nature 420:800–803

    Article  CAS  Google Scholar 

  2. Sharma P, Brown S, Walter G, Santra S, Moudgil B (2006) Adv Colloid Interface Sci 123–126:471–485

    Article  Google Scholar 

  3. Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Science 281:2013–2016

    Article  CAS  Google Scholar 

  4. Liu W, Howarth M, Greytak AB, Zheng Y, Nocera DG, Ting AY, Bawendi MG (2008) J Am Chem Soc 130:1274–1284

    Article  CAS  Google Scholar 

  5. Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Chem Rev 112:2739–2779

    Article  CAS  Google Scholar 

  6. Valera FE, Quaranta M, Moran A, Blacker J, Armstrong A, Cabral JT, Blackmond DG (2010) Angew Chem Int Ed 49:2478–2485

    Article  CAS  Google Scholar 

  7. Shahbazali E, Hessel V, Noel T, Wang Q (2014) Nanotechnol Rev 3:65–86

    CAS  Google Scholar 

  8. Marre S, Jensen KF (2010) Chem Soc Rev 39:1183–1202

    Article  CAS  Google Scholar 

  9. Gomez L, Sebastian V, Irusta S, Ibarra A, Arruebo M, Santamaria J (2014) Lab Chip 14:325–332

    Article  CAS  Google Scholar 

  10. Chakrabarty A, Marre S, Landis RF, Rotello VM, Maitra U, Guerzo AD, Aymonier C (2015) J Mater Chem C 3:7561–7566

    Article  CAS  Google Scholar 

  11. Hessel V, Kralisch D, Kockmann N, Noel T, Wang Q (2013) ChemSusChem 6:746–789

    Article  CAS  Google Scholar 

  12. Marre S, Roig Y, Aymonier C (2012) J Supercrit Fluids 66:251–264

    Article  CAS  Google Scholar 

  13. Cansell F, Aymonier C (2009) J Supercrit Fluids 47:508–516

    Article  CAS  Google Scholar 

  14. Stouten SC, Noël T, Wang Q, Hessel V (2014) Chem Eng Process Process Intensif 83:26–32

    Article  CAS  Google Scholar 

  15. Cansell F, Aymonier C, Loppinet-Serani A (2003) Curr Opin Solid State Mater Sci 7:331–340

    Article  CAS  Google Scholar 

  16. Desimone JM, Maury EE, Menceloglu YZ, McClain JB, Romack TJ, Combes JR (1994) Science 265:356–359

    Article  CAS  Google Scholar 

  17. Lecoutre C, Guillaument R, Marre S, Garrabos Y, Beysens D and Hahn I (2015) Phys Rev E 91, 060101

    Google Scholar 

  18. Abraham FF (1977) Chem Phys Lett 47:179–181

    Article  CAS  Google Scholar 

  19. Kwang Chu C, Robert LR (1979) Equations of state in engineering and research. American Chemical Society, Washington

    Google Scholar 

  20. Pinho B, Girardon S, Bazer-Bachi F, Bergeot G, Marre S, Aymonier C (2014) Lab Chip 14:3843–3849

    Article  CAS  Google Scholar 

  21. Bazaev AR, Abdulagatov IM, Bazaev EA, Abdurashidova A (2007) J Chem Thermodyn 39:385–411

    Article  CAS  Google Scholar 

  22. Chrastil J (1982) J Phys Chem 86:3016–3021

    Article  CAS  Google Scholar 

  23. Kruse A, Vogel H (2008) Chem Eng Technol 31:23–32

    Article  CAS  Google Scholar 

  24. Kruse A, Vogel H (2008) Chem Eng Technol 31:1241–1245

    Article  CAS  Google Scholar 

  25. Cochran HD, Cummings PT, Karaborni S (1992) Fluid Phase Equilib 71:1–16

    Article  CAS  Google Scholar 

  26. Aymonier C, Loppinet-Serani A, Reveron H, Garrabos Y, Cansell F (2006) J Supercrit Fluids 38:242–251

    Article  CAS  Google Scholar 

  27. Adschiri T, Lee YW, Goto M, Takami S (2011) Green Chem 13:1380–1390

    Article  CAS  Google Scholar 

  28. Desmoulins-Krawiec S, Aymonier C, Loppinet-Serani A, Weill F, Gorsse S, Etourneau J, Cansell F (2004) J Mater Chem 14:228–232

    Article  CAS  Google Scholar 

  29. Aymonier C, Erriguible A, Marre S, Serani A and Cansell F (2007) Int J Chem Reactor Eng 5: Article A77

    Google Scholar 

  30. Dahl JA, Maddux BLS, Hutchison JE (2007) Chem Rev 107:2228–2269

    Article  CAS  Google Scholar 

  31. Philippot G, Elissalde C, Maglione M, Aymonier C (2014) Adv Powder Technol 25:1415–1429

    Article  CAS  Google Scholar 

  32. Cansell F, Chevalier B, Demourgues A, Etourneau J, Even C, Pessey V, Petit S, Tressaud A, Weill F (1999) J Mater Chem 9:67–75

    Article  CAS  Google Scholar 

  33. Marre S, Aymonier C, Subra P and Mignard E (2009) Appl Phys Lett 95:134105

    Google Scholar 

  34. Roig Y, Marre S, Cardinal T and Aymonier C (2011) Angew Chem Int Ed, 50:12071–12074

    Google Scholar 

  35. Takami S, Sugioka KI, Ozawa K, Tsukada T, Adschiri T, Sugimoto K, Takenaka N, Saito Y (2015) Phys Procedia 69:564–569

    Article  CAS  Google Scholar 

  36. Tighe CJ, Gruar RI, Ma CY, Mahmud T, Wang XZ, Darr JA (2012) J Supercrit Fluids 62:165–172

    Article  CAS  Google Scholar 

  37. Dunne PW, Munn AS, Starkey CL, Lester EH (2015) Chem Commun 51:4048–4050

    Article  CAS  Google Scholar 

  38. Tiggelaar RM, Benito-Lopez F, Hermes DC, Rathgen H, Egberink RJM, Mugele FG, Reinhoudt DN, van den Berg A, Verboom W, Gardeniers H (2007) Chem Eng J 131:163–170

    Article  CAS  Google Scholar 

  39. de Mello AJ (2006) Nature 422:394–402

    Google Scholar 

  40. Jensen KF, Ajmera SK, Firebaugh SL, Floyd TM, Franz AJ, Losey MW, Quiram D, Schmidt MA (2000) In: Hoyle W (ed) Automated synthetic methods for speciality chemicals. Royal Society of Chemistry, Cambridge, pp 14–24

    Google Scholar 

  41. Gervais T, Jensen KF (2006) Chem Eng Sci 61:1102–1121

    Article  CAS  Google Scholar 

  42. Marre S, Adamo A, Basak S, Aymonier C, Jensen KF (2010) Ind Eng Chem Res 49:11310–11320

    Article  CAS  Google Scholar 

  43. Oosterbroek RE, Hermes DC, Kakuta M, Benito-Lopez F, Gardeniers JGE, Verboom W, Reinhoudt DN, van den Berg A (2006) Microsyst Technol 12:450–454

    Article  CAS  Google Scholar 

  44. Trachsel F, Hutter C, von Rohr PR (2008) Chem Eng J 135:S309–S316

    Article  CAS  Google Scholar 

  45. Goodwin AK, Rorrer GL (2008) Ind Eng Chem Res 47:4106–4114

    Article  CAS  Google Scholar 

  46. Goodwin AK, Rorrer GL (2009) Energy Fuel 23:3818–3825

    Article  CAS  Google Scholar 

  47. de la Iglesia O, Sebastian V, Mallada R, Nikolaidis G, Coronas J, Kolb G, Zapf R, Hessel V, Santamaria J (2007) Catal Today 125:2–10

    Article  Google Scholar 

  48. Kikutani Y, Hibara A, Uchiyama K, Hisamoto H, Tokeshi M, Kitamori T (2002) Lab Chip 2:193–196

    Article  CAS  Google Scholar 

  49. Mazurczyk R, El Khoury G, Dugas V, Hannes B, Laurenceau E, Cabrera M, Krawczyk S, Souteyrand E, Cloarec JP, Chevolot Y (2008) Sens Actuators B Chem 128:552–559

    Article  CAS  Google Scholar 

  50. Jensen KF (2006) MRS Bull 31:101–107

    Article  CAS  Google Scholar 

  51. Kelley SC, Deluga GA, Smyrl WH (2002) AlChE J 48:1071–1082

    Article  CAS  Google Scholar 

  52. Sabate N, Esquivel JP, Santander J, Torres N, Gracia I, Ivanov P, Fonseca L, Figueras E, Cane C (2008) J New Mater Electrochem Syst 11:143–146

    CAS  Google Scholar 

  53. Wu XH, Guo H, Ye F, Ma CF (2009) Prog Chem 21:1344–1348

    CAS  Google Scholar 

  54. Appelhans D, Ferse D, Adler HJP, Plieth W, Fikus A, Grundke K, Schmitt FJ, Bayer T, Adolphi B (2000) Colloid Surface A 161:203–212

    Article  CAS  Google Scholar 

  55. Kulkarni SA, Vijayamohanan KP (2007) Surf Sci 601:2983–2993

    Article  CAS  Google Scholar 

  56. Srinivasan U, Houston MR, Howe RT, Maboudian R (1998) J Microelectromech Syst 7:252–260

    Article  CAS  Google Scholar 

  57. Lorber N, Sarrazin F, Guillot P, Panizza P, Colin A, Pavageau B, Hany C, Maestro P, Marre S, Delclos T, Aymonier C, Subra P, Prat L, Gourdon C, Mignard E (2011) Lab Chip 11:779–787

    Article  CAS  Google Scholar 

  58. Couto R, Chambon S, Aymonier C, Mignard E, Pavageau B, Erriguible A, Marre S (2015) Chem Commun 51:1008–1011

    Article  CAS  Google Scholar 

  59. Gunther A, Jensen KF (2006) Lab Chip 6:1487–1503

    Article  CAS  Google Scholar 

  60. Song H, Chen DL, Ismagilov RF (2006) Angew Chem Int Ed 45:7336–7356

    Article  CAS  Google Scholar 

  61. Glasgow I, Aubry N (2003) Lab Chip 3:114–120

    Article  CAS  Google Scholar 

  62. Levenspiel O (2002) Chem Eng Sci 57:4691–4696

    Article  CAS  Google Scholar 

  63. Marre S, Park J, Rempel J, Guan J, Bawendi MG, Jensen KF (2008) Adv Mater 20:4830–4834

    Article  CAS  Google Scholar 

  64. Marre S, Baek J, Park J, Bawendi MG, Jensen KF (2009) JALA 14:367–373

    CAS  Google Scholar 

  65. Baek J, Allen PM, Bawendi MG, Jensen KF (2011) Angew Chem Int Ed 50:627–630

    Article  CAS  Google Scholar 

  66. Watkins JJ, Blackburn JM, McCarthy TJ (1999) Chem Mater 11:213–215

    Article  CAS  Google Scholar 

  67. Moner-Girona M, Roig A, Molins E, Llibre J (2003) J Sol-Gel Sci Technol 26:645–649

    Article  CAS  Google Scholar 

  68. Slostowski C, Marre S, Babot O, Toupance T, Aymonier C (2012) Langmuir 28:16656–16663

    Article  CAS  Google Scholar 

  69. Cabanas A, Darr JA, Lester E and Poliakoff M (2000) Chem Commun 901–902

    Google Scholar 

  70. Pedersen BL, Yin H, Birkedal H, Nygren M, Iversen BB (2010) Chem Mater 22:2375–2383

    Article  CAS  Google Scholar 

  71. Sui R, Charpentier P (2012) Chem Rev 112:3057–3082

    Article  CAS  Google Scholar 

  72. Znaidi L, Chhor K, Pommier C (1996) Mater Res Bull 31:1527–1535

    Article  CAS  Google Scholar 

  73. Gourinchas Courtecuisse V, Chhor K, Bocquet JF, Pommier C (1996) Ind Eng Chem Res 35:2539–2545

    Article  Google Scholar 

  74. Bocquet JF, Chhor K, Pommier C (1999) Mater Chem Phys 57:273–280

    Article  CAS  Google Scholar 

  75. Reverón H, Elissalde C, Aymonier C, Bidault O, Maglione M, Cansell F (2005) J Nanosci Nanotechnol 5:1741–1744

    Article  Google Scholar 

  76. Reverón H, Elissalde C, Aymonier C, Bousquet C, Maglione M, Cansell F (2006) Nanotechnology 17:3527

    Article  Google Scholar 

  77. Philippot G, Jensen KMØ, Christensen M, Elissalde C, Maglione M, Iversen BB, Aymonier C (2014) J Supercrit Fluids 87:111–117

    Article  CAS  Google Scholar 

  78. Philippot G, Albino M, Chung UC, Josse M, Elissalde C, Maglione M, Aymonier C (2015) Mater Des 86:354–360

    CAS  Google Scholar 

  79. Philippot G, Albino M, Epherre R, Chevallier G, Beynet Y, Manière C, Weibel A, Peigney A, Deluca M, Elissalde C, Maglione M, Aymonier C and Estournès C (2015) Adv Electron Mater 1

    Google Scholar 

  80. Giroire B, Marre S, Garcia A, Cardinal T and Aymonier C (2016) React Chem Eng, DOI: 10.1039/C5RE00039D

    Google Scholar 

  81. Moisan S, Marty JD, Cansell F, Aymonier C (2008) Chem Commun 1428–1430

    Google Scholar 

  82. Dumont MF, Moisan S, Aymonier C, Marty JD, Mingotaud C (2009) Macromolecules 42:4937–4940

    Article  CAS  Google Scholar 

  83. Pascu O, Moisan S, Marty J-D, Aymonier C (2014) J Phys Chem C 118:14017–14025

    Article  CAS  Google Scholar 

  84. Pascu O, Marre S, Aymonier C, Roig A (2013) Nanoscale 5:2126–2132

    Article  CAS  Google Scholar 

  85. Christian I, Benjamin S, Christopher P, Stefan K, Tonino G, Andreas H (2015) Nanotechnology 26:085604

    Article  Google Scholar 

  86. Roig Y, Marre S, Cardinal T, Aymonier C (2011) Angew Chem Int Ed 50:12071–12074

    Article  CAS  Google Scholar 

  87. Ilin ES, Marre S, Jubera V, Aymonier C (2013) J Mater Chem C 1:5058–5063

    Article  CAS  Google Scholar 

  88. Gendrineau T, Marre S, Vaultier M, Pucheault M, Aymonier C (2012) Angew Chem Int Ed 51:8525–8528

    Article  CAS  Google Scholar 

  89. Guerrand HDS, Marciasini LD, Gendrineau T, Pascu O, Marre S, Pinet S, Vaultier M, Aymonier C, Pucheault M (2014) Tetrahedron 70:6156–6161

    Article  CAS  Google Scholar 

  90. Pascu O, Marciasini L, Marre S, Vaultier M, Pucheault M, Aymonier C (2014) Nanoscale 6:9864–9864

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Marre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Marre, S., Aymonier, C. (2016). Preparation of Nanomaterials in Flow at Supercritical Conditions from Coordination Complexes. In: Noël, T. (eds) Organometallic Flow Chemistry. Topics in Organometallic Chemistry, vol 57. Springer, Cham. https://doi.org/10.1007/3418_2015_166

Download citation

Publish with us

Policies and ethics