Skip to main content

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 58))

Abstract

The recent progress in catalytic asymmetric carbon–boron and carbon–silicon bond formation catalyzed by chiral copper(I) complexes is tremendous. Within less than a decade, the majority of fundamental bond-forming reactions in this arena, that is, conjugate addition, 1,2-addition and allylic substitution, were accomplished. These enantioselective transformations had been either elusive or not even known before. This chapter summarizes these fascinating developments together with a brief mechanistic discussion as these copper(I) catalyses share transmetalation of interelement bonds such as B–B and Si–B as a common feature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For an analysis of the stereochemical outcome using phosphine-type ligands, see [20].

  2. 2.

    For related relevant work, see: α,β-unsaturated ketimines/NHC–copper(I) catalysts [21], α,β-unsaturated imines/phosphoramidite–copper(I) catalyst [22], in situ-formed α,β-unsaturated aldimines/phosphine–copper(I) catalysts [23], and α,β-unsaturated esters/NHC–copper(I) catalysts [24, 25].

  3. 3.

    For the 1,4-addition to α,β-unsaturated sulfones, see [27].

  4. 4.

    For a metal-free protocol using a chiral phosphine as catalyst, see [47].

  5. 5.

    For a racemic version with chirality transfer from an enantiopure starting material, see [53].

  6. 6.

    For the use of related NHC–copper(I) complex L7∙CuCl in the enantioselective 1,4-addition of nucleophilic boron, see Sect. 2.1, Scheme 7 [29].

  7. 7.

    For copper(I)-catalyzed addition of nucleophilic boron across C–C triple bonds, see [7478]. For copper(I)-catalyzed addition of nucleophilic silicon across C–C triple bonds, see [7985].

  8. 8.

    The group of Hall used enantiopure β,β-diboron-substituted esters in stereospecific and chemoselective Suzuki–Miyaura cross-coupling reactions (not shown) [91].

References

  1. Semba K, Fujihara T, Terao J, Tsuji Y (2015) Tetrahedron 71:2183–2197

    Article  CAS  Google Scholar 

  2. Sawamura M, Ito H (2014) Carbon–boron and carbon–silicon bond formation. In: Alexakis A, Krause N, Woodward S (eds) Copper-catalyzed asymmetric synthesis. Wiley, Weinheim, pp 157–177

    Chapter  Google Scholar 

  3. Oestreich M, Hartmann E, Mewald M (2013) Chem Rev 113:404–441

    Article  Google Scholar 

  4. Cid J, Gulyás H, Carbó JJ, Fernández E (2012) Chem Soc Rev 41:3558–3570

    Article  CAS  Google Scholar 

  5. Suginome M, Ohmura T (2011) Transition metal-catalyzed element–boryl additions to unsaturated organic compounds. In: Hall DG (ed) Boronic acids: preparation and applications in organic synthesis, medicine and materials. Wiley, Weinheim, pp 171–212

    Chapter  Google Scholar 

  6. Hartmann E, Oestreich M (2011) Chim Oggi 29:34–37

    CAS  Google Scholar 

  7. Calow ADJ, Whiting A (2012) Org Biomol Chem 10:5485–5497

    Article  CAS  Google Scholar 

  8. Hartmann E, Vyas DJ, Oestreich M (2011) Chem Commun 47:7917–7932

    Article  CAS  Google Scholar 

  9. Delvos LB, Oestreich M (2013) Chim Oggi 31:74–77

    Google Scholar 

  10. Takaya J, Iwasawa N (2012) ACS Catal 2:1993–2006

    Article  CAS  Google Scholar 

  11. Parra A, López A, Díaz-Tendero S, Amenós L, Ruano JLG, Tortosa M (2014) Synlett 26:494–500

    Google Scholar 

  12. Lee J-E, Yun J (2008) Angew Chem Int Ed 47:145–147

    Article  CAS  Google Scholar 

  13. Sim H-S, Feng X, Yun J (2009) Chem Eur J 15:1939–1943

    Article  CAS  Google Scholar 

  14. Chea H, Sim H-S, Yun J (2009) Adv Synth Catal 351:855–858

    Article  CAS  Google Scholar 

  15. Hartmann E, Oestreich M (2012) Org Lett 14:2406–2409

    Article  CAS  Google Scholar 

  16. Feng X, Yun J (2009) Chem Commun 6577–6579

    Google Scholar 

  17. Chen I-H, Yin L, Itano W, Kanai M, Shibasaki M (2009) J Am Chem Soc 131:11664–11665

    Article  CAS  Google Scholar 

  18. Chen I-H, Kanai M, Shibasaki M (2012) Org Lett 12:4098–4101

    Article  Google Scholar 

  19. Lillo V, Prieto A, Bonet A, Dias-Requejo MM, Ramirez J, Perez JP, Fernandez E (2009) Organometallics 28:659–662

    Article  CAS  Google Scholar 

  20. Fleming WJ, Müller-Bunz H, Lillo V, Fernández E, Guiry PJ (2009) Org Biomol Chem 7:2520–2524

    Article  CAS  Google Scholar 

  21. Solé C, Whiting A, Gulyás H, Fernández E (2011) Adv Synth Catal 353:376–384

    Article  Google Scholar 

  22. Solé C, Bonet A, de Vries AHM, de Vries JG, Lefort L, Gulyás H, Fernández E (2012) Organometallics 31:7855–7861

    Article  Google Scholar 

  23. Calow ADJ, Batsanov AS, Pujol A, Solè C, Fernández E (2013) Org Lett 15:4810–4813

    Article  CAS  Google Scholar 

  24. Zhang J-L, Chen L-A, Xu R-B, Wang C-F, Ruan Y-P, Wang A-E, Huang P-Q (2013) Tetrahedron Asymmetry 24:492–498

    Article  CAS  Google Scholar 

  25. Huang L, Cao Y, Zhao M, Tang Z, Sun Z (2014) Org Biomol Chem 12:6554−6556

    Google Scholar 

  26. O’Brien JM, Lee K-S, Hoveyda AH (2010) J Am Chem Soc 132:10630–10633

    Article  Google Scholar 

  27. Moure AL, Arrayás RG, Cerretero JC (2011) Chem Commun 47:6701–6703

    Article  CAS  Google Scholar 

  28. Hirsch-Weil D, Abboud KA, Hong S (2010) Chem Commun 46:7525–7527

    Article  CAS  Google Scholar 

  29. Park JK, Lackey HH, Rexford MD, Kovnur K, Shatruk M, McQuade DT (2010) Org Lett 12:5008–5011

    Article  CAS  Google Scholar 

  30. Zhao L, Ma Y, Duan W, He F, Chen J, Song C (2012) Org Lett 14:5780–5783

    Article  CAS  Google Scholar 

  31. Zhao L, Ma Y, He F, Duan W, Chen J, Song C (2013) J Org Chem 78:1677–1681

    Article  CAS  Google Scholar 

  32. Jiang Q, Guo T, Yu Z (2015) ChemCatChem 7:660–665

    Article  CAS  Google Scholar 

  33. Suginome M, Matsuda T, Ito H (2000) Organometallics 19:4647–4649

    Article  CAS  Google Scholar 

  34. Ohmura T, Suginome M (2009) Bull Chem Soc Jpn 82:29–49

    Article  CAS  Google Scholar 

  35. Lee K-S, Hoveyda AH (2010) J Am Chem Soc 132:2898–2900

    Article  CAS  Google Scholar 

  36. Plotzitzka J, Kleeberg C (2014) Organometallics 33:6915–6926

    Article  CAS  Google Scholar 

  37. Harb HY, Collins KD, Altur JVG, Bowker S, Campbell L, Procter DJ (2010) Org Lett 12:5446–5449

    Article  CAS  Google Scholar 

  38. Pace V, Rae JP, Harb HY, Procter DJ (2013) Chem Commun 49:5150–5152

    Article  CAS  Google Scholar 

  39. Pace V, Rae JP, Procter DJ (2014) Org Lett 16:476–479

    Article  CAS  Google Scholar 

  40. Ibrahem I, Santoro S, Himo F, Córdova A (2011) Adv Synth Catal 353:245–252

    Article  CAS  Google Scholar 

  41. Luo Y, Roy ID, Madec AGE, Lam HW (2014) Angew Chem Int Ed 53:4186–4190

    Article  CAS  Google Scholar 

  42. Lee K-S, Wu H, Haeffner F, Hoveyda AH (2012) Organometallics 31:7823–7826

    Article  CAS  Google Scholar 

  43. Kubota K, Yamamoto E, Ito H (2015) J Am Chem Soc 137:420–424

    Article  CAS  Google Scholar 

  44. Beene MA, An C, Ellman JA (2008) J Am Chem Soc 130:3769–3771

    Google Scholar 

  45. Wen K, Wang H, Chen J, Zhang H, Cui X, Wei C, Fan E, Sun Z (2013) J Org Chem 78:4305–4309

    Google Scholar 

  46. Zhang S-S, Zhao Y-S, Tian P, Lin G-Q (2013) Synlett 24:437–442

    Article  Google Scholar 

  47. Solé C, Gulyas H, Fernández E (2012) Chem Commun 48:3769–3774

    Article  Google Scholar 

  48. Cirriez V, Rasson C, Hermant T, Petrignet J, Alvarez JD, Robeyns K, Riant O (2013) Angew Chem Int Ed 52:1785–1788

    Article  CAS  Google Scholar 

  49. Hensel A, Nagura K, Delvos LB, Oestreich M (2014) Angew Chem Int Ed 53:4964–4967

    Article  CAS  Google Scholar 

  50. Mita T, Sugawara M, Saito K, Sato Y (2014) Org Lett 16:3028–3031

    Article  CAS  Google Scholar 

  51. Zhao C, Jiang C, Wang J, Wu C, Zhang Q-W, He W (2014) Asian J Org Chem 3:851–855

    Article  CAS  Google Scholar 

  52. Ito H, Ito S, Sakai Y, Matsuura K, Sawamura M (2007) J Am Chem Soc 129:14856–14857

    Article  CAS  Google Scholar 

  53. Ito H, Kawakami C, Sawamura M (2005) J Am Chem Soc 127:16034–16035

    Article  CAS  Google Scholar 

  54. Ito H, Kosaka Y, Nonoyama K, Sakai Y, Sawamura M (2008) Angew Chem Int Ed 47:7424–7427

    Article  CAS  Google Scholar 

  55. Zhong C, Kunii S, Kosaka Y, Sawamura M, Ito H (2010) J Am Chem Soc 132:11440–11442

    Article  CAS  Google Scholar 

  56. Guzman-Martinez A, Hoveyda AH (2010) J Am Chem Soc 132:10634–10637

    Article  CAS  Google Scholar 

  57. Park JK, Lackey HH, Ondrusek BA, McQuade DT (2011) J Am Chem Soc 133:2410–2413

    Article  CAS  Google Scholar 

  58. Yamamoto E, Takenouchi Y, Ozaki T, Miya T, Ito H (2014) J Am Chem Soc 136:16515–16521

    Article  CAS  Google Scholar 

  59. Delvos LB, Vyas DJ, Oestreich M (2013) Angew Chem Int Ed 52:4650–4653

    Article  CAS  Google Scholar 

  60. Delvos LB, Hensel A, Oestreich M (2014) Synthesis 46:2957–2964

    Article  Google Scholar 

  61. Takeda M, Shintani R, Hayashi T (2013) J Org Chem 78:5007–5017

    Article  CAS  Google Scholar 

  62. Morizawa Y, Oda H, Oshima K, Nozaki H (1984) Tetrahedron Lett 25:1163–1166

    Article  CAS  Google Scholar 

  63. Weickgenannt A, Oestreich M (2010) Chem Eur J 16:402–412

    Article  CAS  Google Scholar 

  64. Oestreich M, Auer G (2005) Adv Synth Catal 347:637–640

    Article  CAS  Google Scholar 

  65. Schmidtmann ES, Oestreich M (2006) Chem Commun 3643–3645

    Google Scholar 

  66. Vyas DJ, Oestreich M (2010) Chem Commun 46:568–570

    Article  CAS  Google Scholar 

  67. Hazra CK, Oestreich M (2012) Org Lett 14:4010–4013

    Article  CAS  Google Scholar 

  68. Hensel A, Oestreich M (2015) Chem Eur J 21:9062–9065

    Article  CAS  Google Scholar 

  69. Ito H, Kunii S, Sawamura M (2010) Nat Chem 2:972–976

    Article  CAS  Google Scholar 

  70. Delvos LB, Oestreich M (2015) Synthesis 47:924–933

    Article  CAS  Google Scholar 

  71. Sasaki Y, Zhong C, Sawamura M, Ito H (2010) J Am Chem Soc 132:1226–1227

    Article  CAS  Google Scholar 

  72. Burns AR, González JS, Lam HW (2012) Angew Chem Int Ed 51:10827–10831

    Article  CAS  Google Scholar 

  73. Liu P, Fukui Y, Tian P, He Z-T, Sun CY, Wu N-Y, Lin G-Q (2013) J Am Chem Soc 135:11700–11703

    Article  CAS  Google Scholar 

  74. Lee J-E, Kwon J, Yun J (2008) Chem Commun 733–734

    Google Scholar 

  75. Lee Y, Jang H, Hoveyda AH (2009) J Am Chem Soc 131:18234–18235

    Article  CAS  Google Scholar 

  76. Kim HR, Jung IG, Yoo K, Jang K, Lee ES, Yun J, Son SU (2010) Chem Commun 46:758–760

    Article  CAS  Google Scholar 

  77. Kim HR, Yun J (2011) Chem Commun 47:2943–2945

    Article  CAS  Google Scholar 

  78. Jung HY, Yun J (2012) Org Lett 14:2606–2609

    Article  CAS  Google Scholar 

  79. Wang P, Yeo X-L, Loh T-P (2011) J Am Chem Soc 133:1254–1256

    Article  CAS  Google Scholar 

  80. Meng F, Jang H, Hoveyda AH (2013) Chem Eur J 19:3204–3214

    Article  CAS  Google Scholar 

  81. Hazra CK, Fopp C, Oestreich M (2014) Chem Asian J 9:3005–3010

    Article  CAS  Google Scholar 

  82. Vercruysse S, Cornelissen L, Nahra F, Collard L, Riant O (2014) Chem Eur J 20:1834–1838

    Article  CAS  Google Scholar 

  83. Calderone JA, Santos WL (2014) Angew Chem Int Ed 53:4154–4158

    Article  CAS  Google Scholar 

  84. Linstadt RTH, Peterson CA, Lippincott DJ, Jette CI, Lipschutz BH (2014) Angew Chem Int Ed 53:4159–4163

    Article  CAS  Google Scholar 

  85. Xu Y-H, Wu L-H, Wang J, Loh T-P (2014) Chem Commun 50:7195–7197

    Article  CAS  Google Scholar 

  86. Matsuda N, Hirano K, Satoh T, Miura M (2013) J Am Chem Soc 135:4934–4937

    Article  CAS  Google Scholar 

  87. Meng F, Haeffner F, Hoveyda AH (2014) J Am Chem Soc 136:11304–11307

    Article  CAS  Google Scholar 

  88. Welle A, Petrignet J, Tinant B, Wouters J, Riant O (2010) Chem Eur J 16:10980–10983

    Article  CAS  Google Scholar 

  89. Noh D, Yoon SK, Won J, Lee JY, Yun J (2011) Chem Asian J 6:1967–1969

    Article  CAS  Google Scholar 

  90. Feng X, Jeon H, Yun J (2013) Angew Chem Int Ed 52:3989–3992

    Article  CAS  Google Scholar 

  91. Lee JCH, McDonald R, Hall DG (2011) Nat Chem 3:894–899

    Article  CAS  Google Scholar 

  92. Ito H, Okura T, Matsuura K, Sawamura M (2010) Angew Chem Int Ed 49:560–563

    Article  CAS  Google Scholar 

  93. Parra A, Amenós L, Guisán-Ceinos M, López A, Ruano JLG, Tortosa M (2014) J Am Chem Soc 136:15833–15836

    Article  CAS  Google Scholar 

Download references

Acknowledgments

M.O. thanks the Einstein Foundation (Berlin) for an endowed professorship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Oestreich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hensel, A., Oestreich, M. (2015). Asymmetric Addition of Boron and Silicon Nucleophiles. In: Harutyunyan, S. (eds) Progress in Enantioselective Cu(I)-catalyzed Formation of Stereogenic Centers. Topics in Organometallic Chemistry, vol 58. Springer, Cham. https://doi.org/10.1007/3418_2015_156

Download citation

Publish with us

Policies and ethics