Skip to main content

Bimetallic Homogeneous Hydroformylation

  • Chapter
  • First Online:
Book cover Homo- and Heterobimetallic Complexes in Catalysis

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 59))

Abstract

A dirhodium hydrido-carbonyl catalyst system based on a binuclating tetraphosphine ligand is discussed. Spectroscopic and DFT computational studies support the formulation of the key catalyst complex in acetone solvent as [Rh2(μ-H)2(CO)2(rac-P4)]2+, which is highly active and regioselective for producing linear aldehydes under mild conditions. This dicationic catalyst suffers from facile fragmentation reactions in acetone that lead to inactive monometallic and bimetallic complexes. The addition of water to the acetone solvent leads to deprotonation from the dicationic catalyst to form monocationic dirhodium catalyst species that are far less susceptible to deactivation. Spectroscopic and DFT computational studies indicate that the key monocationic catalyst is [Rh2(μ-H)(CO)3(rac-P4)]+. Although the monocationic bimetallic catalyst is less active on a per molecule basis relative to the dicationic catalyst, there is a higher concentration present producing better overall catalyst rates and selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cornils B (1980) In: Falbe J (ed) New syntheses with carbon monoxide. Springer, Berlin

    Google Scholar 

  2. Tkatchenko I (1982) In: Wilkinson G, Stone FGA, Abel EW (eds) Comprehensive organometallic chemistry. Pergamon, Oxford

    Google Scholar 

  3. Stanley GG (1994) In: King B (ed) Encyclopedia of inorganic chemistry. Wiley, New York

    Google Scholar 

  4. van Leeuwen PWNM, Claver C (eds) (2000) Rhodium catalyzed hydroformylation. Kluwer, Dordrecht

    Google Scholar 

  5. Börner A (2012) Chem Rev 112:5675. doi:10.1021/cr3001803

    Article  Google Scholar 

  6. Muetterties EL (1975) Bull Soc Chim Belg 84:959. doi:10.1002/bscb.19750841006

    Article  CAS  Google Scholar 

  7. Muetterties EL (1976) Bull Soc Chim Belg 85:451. doi:10.1002/bscb.19760850701

    Article  CAS  Google Scholar 

  8. Muetterties EL (1978) Angew Chem Int Ed Engl 17:545. doi:10.1002/anie.197805453

    Article  Google Scholar 

  9. Muetterties EL, Krause MJ (1983) Angew Chem Int Ed Engl 22:135. doi:10.1002/anie.198301351

    Article  Google Scholar 

  10. Heck RF, Breslow DS (1961) J Am Chem Soc 83:4023. doi:10.1021/ja01480a017

    Article  Google Scholar 

  11. Jones WD, Huggins JM, Bergman RG (1981) J Am Chem Soc 103:4415. doi:10.1021/ja00405a022

    Article  CAS  Google Scholar 

  12. Nappa MJ, Santi R, Halpern J (1985) Organometallics 4:34. doi:10.1021/om00120a007

    Article  CAS  Google Scholar 

  13. Martin BD, Warner KE, Norton JR (1986) J Am Chem Soc 108:33. doi:10.1021/ja00261a008

    Article  CAS  Google Scholar 

  14. Ungváry F, Markó L (1983) Organometallics 2:1608. doi:10.1021/om50005a021

    Article  Google Scholar 

  15. Mirbach MF (1984) J Organomet Chem 265:205. doi:10.1016/0022-328X(84)80075-3

    Article  CAS  Google Scholar 

  16. Moser WR (1992) In: Moser WR, Slocum DW (eds) Homogeneous transition metal catalyzed reactions. ACS advances in chemistry series, vol 230. ACS, Washington, p 14, Chapter 1

    Google Scholar 

  17. Ryan RC, Pittman CU Jr, O’Connor JP (1977) J Am Chem Soc 99:1986. doi:10.1021/ja00448a057

    Article  CAS  Google Scholar 

  18. Pittman CU Jr, Wilemon GM, Wilson WD, Ryan RC (1980) Angew Chem Int Ed Engl 19:478. doi:10.1002/anie.198004781

    Article  Google Scholar 

  19. Don M-J, Richmond MG (1992) J Mol Catal 73:181. doi:10.1016/0304-5102(92)80071-N

    Article  CAS  Google Scholar 

  20. Sanger AR (1983) In: Pignolet LH (ed) Homogeneous catalysis with metal phosphine complexes. Plenum, New York, pp 228–233, Chapter 6

    Google Scholar 

  21. Ceriotti A, Garlaschilli L, Longoni G, Malatesta MC, Strumolo D, Fumagalli A, Martinengo S (1984) J Mol Catal 24:309. doi:10.1016/0304-5102(84)85118-4

    Article  CAS  Google Scholar 

  22. Garland M (1993) Organometallics 12:535. doi:10.1021/om00026a041

    Article  CAS  Google Scholar 

  23. Kalck P (1988) Polyhedron 7:2441. doi:10.1016/S0277-5387(00)86365-2

    Article  CAS  Google Scholar 

  24. Davis R, Epton JW, Southern TG (1992) J Mol Catal 77:159. doi:10.1016/0304-5102(92)80196-N

    Article  CAS  Google Scholar 

  25. Laneman SA, Fronczek FR, Stanley GG (1988) J Am Chem Soc 110:5585. doi:10.1021/ja00224a061

    Article  CAS  Google Scholar 

  26. Laneman SA, Fronczek FR, Stanley GG (1989) Inorg Chem 28:1872. doi:10.1021/ic00309a021

    Article  CAS  Google Scholar 

  27. Laneman SA, Fronczek FR, Stanley GG (1989) Inorg Chem 28:1206. doi:10.1021/ic00306a003

    Article  CAS  Google Scholar 

  28. Broussard ME, Juma B, Train SG, Peng WJ, Laneman SA, Stanley GG (1993) Science 260:1784. doi:10.1126/science.260.5115.1784

    Article  CAS  Google Scholar 

  29. Pruett RL, Smith JA (1969) J Org Chem 34:327. doi:10.1021/jo01254a015

    Article  CAS  Google Scholar 

  30. Kastrup RV, Merola JS, Oswald AA (1982) In: Alyea EC, Meek DW (eds) Catalytic aspects of metal phosphine complexes, vol 196, Advances in chemistry series. American Chemical Society, Washington, Chap. 3

    Chapter  Google Scholar 

  31. Brown JM, Kent AG (1987) J Chem Soc Perkin Trans 1597. Doi:10.1039/p29870001597

  32. Matthews RC, Howell DK, Peng WJ, Train SG, Treleaven WD, Stanley GG (1996) Angew Chem Int Ed Engl 35:2253. doi:10.1002/anie.199622531

    Article  CAS  Google Scholar 

  33. Hunt C Jr, Fronczek FR, Billodeaux DR, Stanley GG (2001) Inorg Chem 40:5192. doi:10.1021/ic010003s

    Article  CAS  Google Scholar 

  34. Cotton FA, Walton RA (1993) Multiple bonds between metal atoms. Clarendon Press/Oxford University Press, Oxford/New York, pp 431–501

    Google Scholar 

  35. Cotton FA, Eagle CT, Price AC (1988) Inorg Chem 27:4362. doi:10.1021/ic00297a007

    Article  CAS  Google Scholar 

  36. Tortorelli LJ, Tinsley PW, Woods C, Janke CJ (1988) Polyhedron 7:315. doi:10.1016/S0277-5387(00)80473-8

    Article  CAS  Google Scholar 

  37. Woods C, Tortorelli LJ (1988) Polyhedron 7:1751. doi:10.1016/S0277-5387(00)80407-6

    Article  CAS  Google Scholar 

  38. Bianchini C, Meli A, Laschi F, Ramirez JA, Zanello P, Vacca A (1988) Inorg Chem 27:4429. doi:10.1021/ic00297a019

    Article  CAS  Google Scholar 

  39. Sutherland BR, Cowie M (1984) Inorg Chem 23:1290. doi:10.1021/ic00177a023

    Article  CAS  Google Scholar 

  40. Bianchini C, Laschi F, Masi D, Mealli C, Meli A, Ottaviani FM, Proserpio DM, Sabat M, Zanello P (1989) Inorg Chem 28:2552. doi:10.1021/ic00312a011

    Article  CAS  Google Scholar 

  41. Schiavo SL, Bruno G, Nicolo F, Piraino P, Faraone F (1985) Organometallics 4:2091. doi:10.1021/om00131a004

    Article  Google Scholar 

  42. Sivak AJ, Muetterties EL (1979) J Am Chem Soc 101:4878. doi:10.1021/ja00511a016

    Article  CAS  Google Scholar 

  43. Thorn DL, Ibers JA (1982) Adv Chem Ser 196:117. doi:10.1021/ba-1982-0196.ch007

    Article  CAS  Google Scholar 

  44. Aubry DA, Bridges NN, Ezell K, Stanley GG (2003) J Am Chem Soc 125:11180. doi:10.1021/ja035926w

    Article  CAS  Google Scholar 

  45. Peng W-J, Train SG, Howell DK, Fronczek FR, Stanley GG (1996) Chem Commun 2607. Doi:10.1039/CC9960002607

  46. Barker BL (2005) LSU dissertation. http://etd.lsu.edu/docs/available/etd-04132005-131235/unrestricted/Barker_dis.pdf

  47. Sandee AJ, Reek ANH, van Leeuwen PWMN (1999) Angew Chem Int Ed 38:3231. doi:10.1002/(SICI)1521-3773(19991102)

    Article  CAS  Google Scholar 

  48. Zuiedveld MA, van Leeuwen PWMN (2002) J Chem Soc Dalton Trans 2308. Doi: 10.1039/B111596K

  49. Schreiter WJ, Monteil AR, Kalachnikova K, Peterson MA, Gasery CD, McCandless GT, Fronczek FR, Stanley GG (2014) Inorg Chem 53:10036. doi:10.1021/ic5019345

    Article  CAS  Google Scholar 

  50. Nair P, White CP, Anderson GK, Rath NP (2006) J Organomet Chem 691:529. doi:10.1016/j.jorganchem.2005.09.021

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research has been supported over the years by NSF, the Louisiana Board of Regents through their Industrial Ties programs, and the following companies: Hoechst Celanese, Arco Chemical, Albemarle, Ferro, Eastman Chemical, Sasol North America, and current funding from Dow Chemical. Additionally, the team leader had excellent discussions and interactions with hydroformylation experts at Union Carbide (now Dow), ExxonMobil, and Shell Chemical.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George G. Stanley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fernando, R.G., Gasery, C.D., Moulis, M.D., Stanley, G.G. (2016). Bimetallic Homogeneous Hydroformylation. In: Kalck, P. (eds) Homo- and Heterobimetallic Complexes in Catalysis. Topics in Organometallic Chemistry, vol 59. Springer, Cham. https://doi.org/10.1007/3418_2015_147

Download citation

Publish with us

Policies and ethics