Advertisement

Pincerlike Cyclic Systems for Unraveling Fundamental Coinage Metal Redox Processes

  • Marc Font
  • Xavi RibasEmail author
Chapter
Part of the Topics in Organometallic Chemistry book series (TOPORGAN, volume 54)

Abstract

Pincerlike cyclic ligands have overcome the high instability of transition metals in their higher oxidation states and have permitted the isolation of such species and the exhaustive study of their properties and reactivity. The formation and isolation of organometallic CuII and MIII (M=Cu, Ag, Au) complexes stabilized by NCPs, carbaporphyrins, carbaporphyrinoids, heterocalixarenes, and triaza macrocyclic ligands will be discussed in this chapter. The study of these complexes have led to the discovery of unprecedented reactivity and proved the plausibility of often invoked pathways in copper-catalyzed cross-coupling reactions. Aryl-MIII (M=Cu, Ag) stable species have been implicated as the key intermediate species that operate in coupling catalysis through two-electron redox cycles involving oxidative addition and reductive elimination fundamental steps.

Keywords

Copper Cross-coupling catalysis Gold Group 11 metals High oxidation states Reaction mechanisms Silver 

Abbreviations

Ac

Acetyl

Ar

Aryl

AT

Atom transfer

cal

Calories

cat

Catalytic

Cp

Cyclopentadienyl

DDQ

2,3-Dichloro-5,6-dicyano-1,4-benzoquinone

DFT

Density functional theory

DMF

Dimethylformamide

DMSO

Dimethyl sulfoxide

equiv

Equivalent(s)

Et

Ethyl

h

Hour(s)

i-Bu

Isobutyl

L

Ligand

Me

Methyl

min

Minute(s)

mol

Mole(s)

N2CP

Doubly N-confused porphyrin

Naph

Naphthalene

n-Bu

Butyl

NCP

N-confused porphyrin

NMR

Nuclear magnetic resonance

n-Pr

Propyl

Nuc

Nucleophile

[O]

Oxidant

Ph

Phenyl

phen

Phenanthroline

py

Pyridine

rt

Room temperature

s

Second(s)

SET

Single-electron transfer

t-Bu

Tert-butyl

TEMPO

(2,2,6,6-Tetramethylpiperidin-1-yl)oxyl

Tf

Trifluoromethanesulfonyl (triflyl)

TFA

Trifluoroacetic acid

THF

Tetrahydrofuran

Tol

4-Methylphenyl

UV–Vis

Ultraviolet–visible spectroscopy

V

Volt(s)

xyl

Xylyl

References

  1. 1.
    Harvey JD, Ziegler CJ (2003) Coord Chem Rev 247:1CrossRefGoogle Scholar
  2. 2.
    Chmielewski PJ, Latos-Grażyński L (2005) Coord Chem Rev 249:2510CrossRefGoogle Scholar
  3. 3.
    Stepień M, Latos- Grażyński L (2005) Acc Chem Res 38:88Google Scholar
  4. 4.
    Srinivasan A, Furuta H (2005) Acc Chem Res 38:10CrossRefGoogle Scholar
  5. 5.
    Ribas X, Casitas A (2010) The bioinorganic and organometallic chemistry of copper(III). In: Pignataro B (ed) Ideas in chemistry and molecular science. Where chemistry meets life. Wiley-VCH, WeinheimGoogle Scholar
  6. 6.
    Wang M-X (2012) Acc Chem Res 45:182CrossRefGoogle Scholar
  7. 7.
    Casitas A, Ribas X (2013) Chem Sci 4:2301CrossRefGoogle Scholar
  8. 8.
    Casitas A (2013) Mechanistic understanding of copper-catalyzed aryl-heteroatom bond formation: dependence on ancillary ligands. In: Ribas X (ed) C-H C-X bond functionalization: transition metal mediation. Royal Society of Chemistry, CambridgeGoogle Scholar
  9. 9.
    Casitas A, Ribas X (2014) Aromatic/vinylic Finkelstein reaction. In: Evano G, Blanchard N (eds) Copper-mediated cross-coupling reactions. Wiley, HobokenGoogle Scholar
  10. 10.
    Casitas A, Ribas X (2014) Insights into the mechanism of modern Ullmann-Goldberg coupling reactions. In: Evano G, Blanchard N (eds) Copper-mediated cross-coupling reactions. Wiley, HobokenGoogle Scholar
  11. 11.
    Naumann D, Roy T, Tebbe K-F, Crump W (1993) Angew Chem Int Ed Engl 32:1482CrossRefGoogle Scholar
  12. 12.
    Chmielewski PJ, Latos-Grazyński L, Schmidt I (2000) Inorg Chem 39:5475CrossRefGoogle Scholar
  13. 13.
    Mitrikas G, Calle C, Schweiger A (2005) Angew Chem Int Ed Engl 44:3301CrossRefGoogle Scholar
  14. 14.
    Calle C, Schweiger A, Mitrikas G (2007) Inorg Chem 46:1847CrossRefGoogle Scholar
  15. 15.
    Furuta H, Ishizuka T, Osuka A, Uwatoko Y, Ishikawa Y (2001) Angew Chem Int Ed Engl 40:2323CrossRefGoogle Scholar
  16. 16.
    Maeda H, Osuka A, Ishikawa Y, Aritome I, Hisaeda Y, Furuta H (2003) Org Lett 5:1293CrossRefGoogle Scholar
  17. 17.
    Furuta H, Maeda H, Osuka A (2000) J Am Chem Soc 122:803CrossRefGoogle Scholar
  18. 18.
    Maeda H, Osuka A, Furuta H (2003) J Am Chem Soc 125:15690CrossRefGoogle Scholar
  19. 19.
    Araki K, Winnischofer H, Toma HE, Maeda H, Osuka A, Furuta H (2001) Inorg Chem 40:2020Google Scholar
  20. 20.
    Furuta H, Ogawa T, Uwatoko Y, Araki K (1999) Inorg Chem 38:2676Google Scholar
  21. 21.
    Grzegorzek N, Latos-Grażyński L, Szterenberg L (2012) Org Biomol Chem 10:8064CrossRefGoogle Scholar
  22. 22.
    Lash TD, von Ruden AL (2008) J Org Chem 73:9417CrossRefGoogle Scholar
  23. 23.
    Toganoh M, Niino T, Furuta H (2008) Chem Commun 4070Google Scholar
  24. 24.
    Pawlicki M, Kańska I, Latos-Grażyński L (2007) Inorg Chem 46:6575CrossRefGoogle Scholar
  25. 25.
    Grzegorzek N, Pawlicki M, Szterenberg L, Latos-Grażyński L (2009) J Am Chem Soc 131:7224CrossRefGoogle Scholar
  26. 26.
    Grzegorzek N, Nojman E, Szterenberg L, Latos-Grażyński L (2013) Inorg Chem 52:2599CrossRefGoogle Scholar
  27. 27.
    Muckey MA, Szczepura LF, Ferrence GM, Lash TD (2002) Inorg Chem 41:4840–4842CrossRefGoogle Scholar
  28. 28.
    Lash TD, Colby DA, Szczepura LF (2004) Inorg Chem 43:1246CrossRefGoogle Scholar
  29. 29.
    Lash TD, Rasmussen JM, Bergman KM, Colby DA (2004) Org Lett 6:549CrossRefGoogle Scholar
  30. 30.
    Bergman KM, Ferrence GM, Lash TD (2004) J Org Chem 69:7888CrossRefGoogle Scholar
  31. 31.
    Miyake K, Lash TD (2004) Chem Commun 178Google Scholar
  32. 32.
    El-beck JA, Lash TD (2006) Org Lett 8:5263Google Scholar
  33. 33.
    Pawlicki M, Latos-Grażyński L (2003) Chem Eur J 9:4650Google Scholar
  34. 34.
    Pawlicki M, Latos-Grażyński L (2005) J Org Chem 70:9123CrossRefGoogle Scholar
  35. 35.
    Chmielewski PJ (2005) Org Lett 7:1789CrossRefGoogle Scholar
  36. 36.
    Szyszko B, Kupietz K, Szterenberg L, Latos-Grażyński L (2014) Chem Eur J 20:1376CrossRefGoogle Scholar
  37. 37.
    Ribas X, Jackson DA, Donnadieu B, Mahía J, Parella T, Xifra R, Hedman B, Hodgson KO, Llobet A, Stack TDP (2002) Angew Chem Int Ed Engl 41:2991CrossRefGoogle Scholar
  38. 38.
    Xifra R, Ribas X, Llobet A, Poater A, Duran M, Solà M, Stack TDP, Benet-Buchholz J, Donnadieu B, Mahía J, Parella T (2005) Chem Eur J 11:5146CrossRefGoogle Scholar
  39. 39.
    Casitas A, King AE, Parella T, Costas M, Stahl SS, Ribas X (2010) Chem Sci 1:326CrossRefGoogle Scholar
  40. 40.
    King AE, Huffman LM, Casitas A, Costas M, Ribas X, Stahl SS (2010) J Am Chem Soc 132:12068CrossRefGoogle Scholar
  41. 41.
    Huffman LM, Stahl SS (2008) J Am Chem Soc 130:9196CrossRefGoogle Scholar
  42. 42.
    Ribas X, Calle C, Poater A, Casitas A, Gómez L, Xifra R, Parella T, Benet-Buchholz J, Schweiger A, Mitrikas G, Solà M, Llobet A, Stack TDP (2010) J Am Chem Soc 132:12299CrossRefGoogle Scholar
  43. 43.
    Casitas A, Canta M, Solà M, Costas M, Ribas X (2011) J Am Chem Soc 133:19386CrossRefGoogle Scholar
  44. 44.
    Font M, Acuña-Parés F, Parella T, Serra J, Luis JM, Lloret-Fillol J, Costas M, Ribas X (2014) Nat Commun 5:4373. doi: 10.1038/ncomms5373 CrossRefGoogle Scholar
  45. 45.
    Yao B, Wang D-X, Huang Z-T, Wang M-X (2009) Chem Commun 2899Google Scholar
  46. 46.
    Zhang H, Yao B, Zhao L, Wang D, Xu B, Wang M (2014) J Am Chem Soc 136:6326CrossRefGoogle Scholar
  47. 47.
    Bertz SH, Cope S, Murphy M, Ogle CA, Taylor BJ (2007) J Am Chem Soc 129:7208CrossRefGoogle Scholar
  48. 48.
    Casitas A, Poater A, Solà M, Stahl SS, Costas M, Ribas X (2010) Dalton Trans 39:10458CrossRefGoogle Scholar
  49. 49.
    Fusi V, Llobet A, Mahía J, Micheloni M, Paoli P, Ribas X, Rossi P (2002) Eur J Inorg Chem 2002:987Google Scholar
  50. 50.
    Long C, Zhao L, You J, Wang M (2014) Organometallics 33:1061CrossRefGoogle Scholar
  51. 51.
    Evano G, Blanchard N, Toumi M (2008) Chem Rev 108:3054CrossRefGoogle Scholar
  52. 52.
    Huffman LM, Casitas A, Font M, Canta M, Costas M (2011) Chem Eur J 17:10643Google Scholar
  53. 53.
    Wang J, Sánchez-Roselló M, Aceña JL, Del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H (2014) Chem Rev 114:2432CrossRefGoogle Scholar
  54. 54.
    Wang Z-L, Zhao L, Wang M-X (2011) Org Lett 13:6560Google Scholar
  55. 55.
    Font M, Parella T, Costas M, Ribas X (2012) Organometallics 31:7976CrossRefGoogle Scholar
  56. 56.
    Huffman LM, Stahl SS (2011) Dalton Trans 40:8959CrossRefGoogle Scholar
  57. 57.
    Hurtley WRH (1929) J Chem Soc 1929:1870CrossRefGoogle Scholar
  58. 58.
    Huang Z, Hartwig JF (2012) Angew Chem Int Ed Engl 51:1028CrossRefGoogle Scholar
  59. 59.
    Wang Z-L, Zhao L, Wang M-X (2012) Chem Commun 48:9418Google Scholar
  60. 60.
    Rovira M, Font M, Ribas X (2013) Chem Cat Chem 5:687Google Scholar
  61. 61.
    Stephens RD, Castro CE (1963) J Org Chem 28:3133CrossRefGoogle Scholar
  62. 62.
    Okuro K, Furuune M, Enna M, Miura M, Nomura M (1993) J Org Chem 58:4716CrossRefGoogle Scholar
  63. 63.
    Rovira M, Font M, Acuña-Parés F, Parella T, Luis JM, Lloret-Fillol J, Ribas X (2014) Chem Eur J 20:10005CrossRefGoogle Scholar
  64. 64.
    Saejueng P, Bates CG, Venkataraman D (2005) Synthesis 2005:1706Google Scholar
  65. 65.
    Yang Y, Ren H, Wang D, Shi F, Wu C (2013) RSC Adv 3:10434CrossRefGoogle Scholar
  66. 66.
    Chen X, Hao X-S, Goodhue CE, Yu J-Q (2006) J Am Chem Soc 128:6790CrossRefGoogle Scholar
  67. 67.
    Wendlandt AE, Suess AM, Stahl SS (2011) Angew Chem Int Ed Engl 50:11062CrossRefGoogle Scholar
  68. 68.
    Lipshutz BH, Yamamoto Y (2008) Chem Rev 108:2793CrossRefGoogle Scholar
  69. 69.
    Naodovic M, Yamamoto H (2008) Chem Rev 108:3132CrossRefGoogle Scholar
  70. 70.
    Weibel J-M, Blanc A, Pale P (2008) Chem Rev 108:3149CrossRefGoogle Scholar
  71. 71.
    Álvarez-Corral M, Muñoz-Dorado M, Rodríguez-García I (2008) Chem Rev 108:3174CrossRefGoogle Scholar
  72. 72.
    Hashmi ASK (2010) A critical comparison: copper, silver and gold. In: Harmata M (ed) Silver in organic chemistry. Wiley, HobokenGoogle Scholar
  73. 73.
    Tang P, Furuya T, Ritter T (2010) J Am Chem Soc 132:12150CrossRefGoogle Scholar
  74. 74.
    Seo S, Taylor JB, Greaney MF (2013) Chem Commun 49:6385CrossRefGoogle Scholar
  75. 75.
    Li P, Wang L (2006) Synlett 14:2261Google Scholar
  76. 76.
    Das R, Mandal M, Chakraborty D (2013) Asian J Org Chem 2:579CrossRefGoogle Scholar
  77. 77.
    Stepień M, Latos-Grażyński L (2003) Org Lett 5:3379CrossRefGoogle Scholar
  78. 78.
    Stepień M, Latos-Grażyński L (2001) Chem Eur J 7:5113CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.QBIS-CAT Research Group, Institut de Química Computacional i Catàlisi (IQCC)CataloniaSpain
  2. 2.Departament de QuímicaUniversitat de GironaCataloniaSpain

Personalised recommendations