Skip to main content

Transition Metal-Catalyzed Carboxylation of Organic Substrates with Carbon Dioxide

  • Chapter
  • First Online:
Carbon Dioxide and Organometallics

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 53))

Abstract

The development of sustainable chemical processes is a long-standing challenge. Carbon dioxide represents a renewable C1 building block for organic synthesis and industrial applications as an alternative to other common feedstocks which are based on natural gas, petroleum oil, or coal. Apart from the advantages associated with the nontoxicity and abundance of CO2, its utilization further enables the reduction in its atmospheric content, which contributes significantly to the greenhouse effect. Although widespread application of CO2 in organic synthesis – even on an industrial scale – will not be able to fully compensate for the steadily increasing atmospheric quantities produced (mainly by the combustion of fuels), ecological and economical factors make its usage highly desirable. Therefore, tremendous efforts toward activation and utilization of CO2 have been made by the scientific community over the last 30 years, and, as a result, the number of highly efficient transition metal-catalyzed CO2-incorporative reactions has increased dramatically, especially within the last decade. The achievements in the development of sustainable and economic chemical processes for the carboxylation of organic molecules with CO2 are presented in detail in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Behr A (1987) Use of carbon dioxide in industrial organic syntheses. Chem Eng Technol 10:16–27

    Article  Google Scholar 

  2. Mikkelsen M, Jorgensen M, Krebs FC (2010) The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ Sci 3:43–81

    Article  CAS  Google Scholar 

  3. Arakawa H et al (2001) Catalysis research of relevance to carbon management: progress, challenges, and opportunities. Chem Rev 101:953–996

    Article  CAS  Google Scholar 

  4. Sakakura T, Kohno K (2009) The synthesis of organic carbonates from carbon dioxide. Chem Commun 11:1312–1330

    Article  CAS  Google Scholar 

  5. Omae I (2012) Recent developments in carbon dioxide utilization for the production of organic chemicals. Coord Chem Rev 256:1384–1405

    Article  CAS  Google Scholar 

  6. Tsuji Y, Fujihara T (2012) Carbon dioxide as a carbon source in organic transformation: carbon–carbon bond forming reactions by transition-metal catalysts. Chem Commun 48:9956–9964

    Article  CAS  Google Scholar 

  7. Huang K, Sun C-L, Shi Z-J (2011) Transition-metal-catalyzed C–C bond formation through the fixation of carbon dioxide. Chem Soc Rev 40:2435–2452

    Article  CAS  Google Scholar 

  8. Sakakura T, Choi J-C, Yasuda H (2007) Transformation of carbon dioxide. Chem Rev 107:2365–2387

    Article  CAS  Google Scholar 

  9. Martin R, Kleij AW (2011) Myth or reality? Fixation of carbon dioxide into complex organic matter under mild conditions. ChemSusChem 4:1259–1263

    Article  CAS  Google Scholar 

  10. Coates GW, Moore DR (2004) Discrete metal-based catalysts for the copolymerization of CO2 and epoxides: discovery, reactivity, optimization, and mechanism. Angew Chem Int Ed 43:6618–6639

    Article  CAS  Google Scholar 

  11. Shaikh A-AG, Sivaram S (1996) Organic carbonates. Chem Rev 96:951–976

    Article  CAS  Google Scholar 

  12. Federsel C, Jackstell R, Beller M (2010) State-of-the-art catalysts for hydrogenation of carbon dioxide. Angew Chem Int Ed 49:6254–6257

    Article  CAS  Google Scholar 

  13. Wang W, Wang S, Ma X, Gong J (2011) Recent advances in catalytic hydrogenation of carbon dioxide. Chem Soc Rev 40:3703–3727

    Article  CAS  Google Scholar 

  14. Goeppert A, Czaun M, Jones J-P, Prakash GKS, Olah GA (2014) Recycling of carbon dioxide to methanol and derived products – closing the loop. Chem Soc Rev 43:7995–8048

    Article  CAS  Google Scholar 

  15. Ohmiya H, Tanabe M, Sawamura M (2011) Copper-catalyzed carboxylation of alkylboranes with carbon dioxide: formal reductive carboxylation of terminal alkenes. Org Lett 13:1086–1088

    Article  CAS  Google Scholar 

  16. Ohishi T, Zhang L, Nishiura M, Hou Z (2011) Carboxylation of alkylboranes by N-heterocyclic carbene copper catalysts: synthesis of carboxylic acids from terminal alkenes and carbon dioxide. Angew Chem Int Ed 50:8114–8117

    Article  CAS  Google Scholar 

  17. Inoue Y, Hisi T, Satake M, Hashimoto H (1979) Reaction of methylenecyclopropanes with carbon dioxide catalysed by palladium(0) complexes. Synthesis of five-membered lactones. J Chem Soc Chem Commun 982

    Google Scholar 

  18. Inoue Y, Itoh Y, Hashimoto H (1978) Oligomerization of 3-hexyne by nickel(0) complexes under CO2. Incorporation of CO2 and novel cyclotrimerization. Chem Lett 633–634

    Google Scholar 

  19. Musco A, Perego C, Tartiari V (1978) Telomerization reactions of butadiene and CO2 catalyzed by phosphine pd(0) complexes: (E)-2-ethylidenehept-6-en-5-olide and octadienyl esters of 2-ethylidenehepta-4,6-dienoic acid. Inorg Chim Acta 28:L147–L148

    Article  CAS  Google Scholar 

  20. Musco A (1980) Co-oligomerization of butadiene and carbon dioxide catalysed by tertiary phosphine–palladium complexes. J Chem Soc Perkin Trans 1:693–698

    Article  Google Scholar 

  21. Behr A, Juszak K-D (1983) Palladium-catalyzed reaction of butadiene and carbon dioxide. J Organomet Chem 255:263–268

    Article  CAS  Google Scholar 

  22. Behr A, Juszak A-D, Keim W (1983) Synthese von 2-ethyliden-6-hepten-5-olid. Synthesis 574

    Google Scholar 

  23. Sasaki Y, Inoue Y, Hashimoto H (1976) Reaction of carbon dioxide with butadiene catalysed by palladium complexes. Synthesis of 2-ethylidenehept-5-en-4-olide. J Chem Soc Chem Commun 605–606

    Google Scholar 

  24. Behr A, He R, Juszak K-D, Krüger C, Tsay Y-H (1986) Steuerungsmöglichkeiten bei der Übergangsmetall-katalysierten Umsetzung von 1,3-Dienen mit Kohlendioxid. Chem Ber 119:991–1015

    Article  CAS  Google Scholar 

  25. Dinjus E, Leitner W (1995) New insights into the palladium-catalysed synthesis of δ-lactones from 1,3-dienes and carbon dioxide. Appl Organomet Chem 9:43–50

    Article  CAS  Google Scholar 

  26. Pitter S, Dinjus E (1997) Phosphinoalkyl nitriles as hemilabile ligands: new aspects in the homogeneous catalytic coupling of CO2 and 1,3-butadiene. J Mol Catal A 125:39–45

    Article  CAS  Google Scholar 

  27. Braunstein P, Matt D, Nobel D (1988) Carbon dioxide activation and catalytic lactone synthesis by telomerization of butadiene and carbon dioxide. J Am Chem Soc 110:3207–3212

    Article  CAS  Google Scholar 

  28. Pitter S, Dinjus E (1997) Phosphinoalkyl nitriles as hemilabile ligands: new aspects in the homogeneous catalytic coupling of CO2 and 1,3-butadiene. J Mol Catal A Chem 125:39–45

    Article  CAS  Google Scholar 

  29. Behr A, Heite M (2000) Telomerisation von Kohlendioxid und 1,3-Butadien: Verfahrensentwicklung via Miniplant-Technik. Chem Ing Technol 72:58–61

    Article  CAS  Google Scholar 

  30. Behr A, Bahke P, Becker M (2004) Palladium-katalysierte Telomerisation von Kohlendioxid mit Butadien im Labor- und Miniplantmaßstab. Chem Ing Technol 76:1828–1832

    Article  CAS  Google Scholar 

  31. Behr A, Becker M (2006) The telomerisation of 1,3-butadiene and carbon dioxide: process development and optimisation in a continuous miniplant. Dalton Trans 4607–4613

    Google Scholar 

  32. Behr A, Henze G (2011) Use of carbon dioxide in chemical syntheses via a lactone intermediate. Green Chem 13:25–39

    Article  CAS  Google Scholar 

  33. Haack V, Dinjus E, Pitter S (1998) Synthesis of polymers with an intact lactone ring structure in the main chain. Die Angew Makromol Chem 257:19–22

    Article  CAS  Google Scholar 

  34. Fiorani G, Kleij AW (2014) Preparation of CO2/diene copolymers: advancing carbon dioxide based materials. Angew Chem Int Ed 53:2–5

    Article  CAS  Google Scholar 

  35. Nakano R, Ito S, Nozaki K (2014) Copolymerization of carbon dioxide and butadiene via a lactone intermediate. Nat Chem 6:325–331

    Article  CAS  Google Scholar 

  36. Hoberg H, Peres Y, Milchereit A (1986) C–C-Verknüpfung von Alkenen mit CO2 an Nickel(0); Herstellung von Zimtsäure aus Styrol. J Organomet Chem 307:C38–C40

    Article  CAS  Google Scholar 

  37. Hoberg H, Peres Y, Krüger C, Tsay Y-H (1987) A 1-Oxa-2-Nickela-5-cyclopentanone from ethene and carbon dioxide: preparation, structure, and reactivity. Angew Chem Int Ed Engl 26:771–773

    Article  Google Scholar 

  38. Walther D, Dinjus E, Sieler J, Thanh NN, Schade W, Leban I (1983) Aktivierung von CO2 an Übergangsmetallzentren: Struktur und Reaktivität eines C–C-Kopplungsproduktes von CO2 und 2,3-Dimethylbutadien am elektronenreichen Nickel(0). Z Naturforsch B 23:237

    CAS  Google Scholar 

  39. Hoberg H, Apotecher B (1984) α, β-Disäuren aus Butadien und Kohlendioxid an Nickel(0). J Organomet Chem 270:C15–C17

    Article  CAS  Google Scholar 

  40. Hoberg H, Schaefer D, Burkhart G (1982) Oxanickelacyclopenten-Derivate, ein neuer Typ vielseitig verwendbarer Synthone. J Organomet Chem 228:C21–C24

    Article  CAS  Google Scholar 

  41. Burkhart G, Hoberg H (1982) Oxanickelacyclopentene derivatives from nickel(0), carbon dioxide, and alkynes. Angew Chem Int Ed Engl 21:76

    Article  Google Scholar 

  42. Hoberg H, Schaefer G, Burkhart G, Krüger C, Romão MJ (1984) Nickel(0)-induzierte C–C-Verknüpfung zwischen Kohlendioxid und Alkinen sowie Alkenen. J Organomet Chem 266:203–224

    Article  CAS  Google Scholar 

  43. Hoberg H, Oster BW (1984) Nickel(0)-induzierte C–C zwischen 1,2-Dienen und Kohlendioxid. J Organomet Chem 266:321–326

    Article  CAS  Google Scholar 

  44. Walther D, Dinjus E, Sieler J, Andersen L, Lindqvist O (1984) Aktivierung von Kohlendioxid an Übergangsmetallzentren: Metallaringschluss mit Dicyclopentadien am elektronenreichen Nickel(0)-Komplexrumpf als topo- und stereoselektive Reaktion. J Organomet Chem 276:99–107

    Article  CAS  Google Scholar 

  45. Hoberg H, Gross S, Milchereit A (1987) Nickel(0)-catalyzed production of a functionalized cyclopentanecarboxylic acid from 1,3-butadiene and CO2. Angew Chem Int Ed Engl 26:571–572

    Article  Google Scholar 

  46. Büssemeier B, Jolly PW, Wilke G (1974) A model for the nickel-catalyzed cooligomerization of butadiene with substituted alkynes. J Am Chem Soc 96:4726–4727

    Article  Google Scholar 

  47. Walther D, Schönberg H, Dinjus E (1987) Aktivierung von Kohlendioxid an Übergangsmetallzentren: Selektive Cooligomerisation mit Hexin(−3) durch das Katalysatorsystem Acetonitril/Trialkylphosphan/Nickel(0) und Struktur eines Nickel(0)-Komplexes mit Side-on gebundenem Acetonitril. J Organomet Chem 334:377–388

    Article  CAS  Google Scholar 

  48. Takimoto M, Mori M (2003) Novel catalytic CO2 incorporation reaction: nickel-catalyzed region- and stereoselective ring-closing carboxylation of bis-1,3-dienes. J Am Chem Soc 124:10008–10009

    Article  CAS  Google Scholar 

  49. Taimoto M, Mori M (2001) Cross-coupling reaction of oxo-π-allylnickel complex generated from 1,3-diene under an atmosphere of carbon dioxide. J Am Chem Soc 123:2895–2896

    Article  CAS  Google Scholar 

  50. Takimoto M, Nakamura Y, Kimura K, Mori M (2004) Highly enantioselective catalytic carbon dioxide incorporation reaction: nickel-catalyzed asymmetric carboxylative cyclization of bis-1,3-dienes. J Am Chem Soc 126:5956–5957

    Article  CAS  Google Scholar 

  51. Takimoto M, Kawamura M, Mori M, Sato Y (2005) Nickel-catalyzed regio- and stereoselective double carboxylation of trimethylsilylallene under an atmosphere of carbon dioxide and its application to the synthesis of chaetomellic acid A anhydride. Synlett 13:2019–2022

    Google Scholar 

  52. Williams CM, Johnson JB, Rovis T (2008) Nickel-catalyzed reductive carboxylation of styrenes using CO2. J Am Chem Soc 130:14936–14937

    Article  CAS  Google Scholar 

  53. Yuan R, Lin Z (2014) Computational insight into the mechanism of nickel-catalyzed reductive carboxylation of styrenes using CO2. Organometallics 33:7147–7156

    Article  CAS  Google Scholar 

  54. Graham DC, Mitchell C, Bruce MI, Metha GF, Bowie JH, Buntine MA (2007) Production of acrylic acid through nickel-mediated coupling of ethylene and carbon dioxide – a dft study. Organometallics 26:6784–6792

    Article  CAS  Google Scholar 

  55. Lee SYT, Cokoja M, Drees M, Li Y, Mink J, Herrmann WA, Kühn FE (2011) Transformation of nickelalactones to methyl acrylate: on the way to a catalytic conversion of carbon dioxide. ChemSusChem 4:1275–1279

    Article  CAS  Google Scholar 

  56. Lee SYT, Ghani AA, D’Elia V, Cokoja M, Herrmann WA, Basset J-M, Kühn FE (2013) Liberation of methyl acrylate from metallalactone complexes via M − O ring opening (M = Ni, Pd) with methylation agents. New J Chem 37:3512–3517

    Article  CAS  Google Scholar 

  57. Plessow PN, Weigel L, Lindner R, Schäfer A, Rominger F, Limbach M, Hofmann P (2013) Mechanistic details of the nickel-mediated formation of acrylates from CO2, ethylene and methyl iodide. Organometallics 32:3327–3338

    Article  CAS  Google Scholar 

  58. Bruckmeier C, Lehenmeier MW, Reichardt R, Vagin S, Rieger B (2010) Formation of methyl acrylate from CO2 and ethylene via methylation of nickelalactones. Organometallics 29:2199–2202

    Article  CAS  Google Scholar 

  59. Hoberg H, Ballesteros A, Sigan A, Jegat C, Milchereit A (1991) Durch (Lig)Ni(0) induzierte Herstellung von mono- und di-Carbonsäuren aus Cyclopenten und Kohlendioxid. Synthesis 5:395–398

    Article  Google Scholar 

  60. Hoberg H, Ballesteros A, Sigan A (1991) Ein neuartiger Ligandentyp zur CC-verknüpfung von Cycloalkenen mit CO2 am (Lig)Ni0-System, folgereaktionen. J Organomet Chem 403:C19–C22

    Article  CAS  Google Scholar 

  61. Jin D, Schmeier TJ, Williard PG, Hazari N, Bernskoetter WH (2013) Lewis acid induced β-elimination from a nickelalactone: efforts toward acrylate production from CO2 and ethylene. Organometallics 32:2152–2159

    Article  CAS  Google Scholar 

  62. Lejkowski ML, Lindner R, Kageyama T, Bódizs GE, Plessow PN, Müller IB, Schäfer A, Rominger F, Hofmann P, Futter C, Schunk SA, Limbach M (2012) The first catalytic synthesis of an acrylate from CO2 and an alkene – a rational approach. Chem Eur J 18:14017–14025

    Article  CAS  Google Scholar 

  63. Plessow PN, Schäfer A, Limbach M, Hofmann P (2014) Acrylate formation from CO2 and ethylene mediated by nickel complexes: a theoretical study. Organometallics 33:3657–3668

    Article  CAS  Google Scholar 

  64. Yang G, Schäffner B, Blug M, Hensen EJM, Pidko EA (2014) A mechanistic study of ni-catalyzed carbon dioxide coupling with ethylene towards the manufacture of acrylic acid. ChemCatChem 6:800–807

    Article  CAS  Google Scholar 

  65. Jin D, Williard PG, Hazari N, Bernskoetter WH (2014) Effect of sodium cation on metallacycle β-hydride elimination in CO2-ethylene coupling to acrylates. Chem Eur J 20:3205–3211

    Article  CAS  Google Scholar 

  66. Huguet N, Jevtovikj I, Gordillo A, Lejkowski M, Lindner R, Bru M, Khalimon AY, Rominger F, Schunk SA, Hofmann P, Limbach M (2014) Nickel-catalyzed direct carboxylation of olefins with CO2: one-pot synthesis of α, β-unsaturated carboxylic acid salts. Chem Eur J 20:16858–16862

    Article  CAS  Google Scholar 

  67. Hendriksen H, Pidko EA, Yang G, Schaeffner B, Vogt D (2014) Catalytic formation of acrylate from carbon dioxide and ethene. Chem Eur J 20:12037–12040

    Article  CAS  Google Scholar 

  68. Binger F, Schuchardt U (1977) Palladium(0)-catalyzed [2σ + 2π] cycloadditions methylenecyclopropane to alkenes. Angew Chem Int Ed Engl 16:249–250

    Article  Google Scholar 

  69. Takaya J, Iwasawa N (2008) Hydrocarboxylation of allenes with CO2 catalyzed by silyl pincer-type palladium complex. J Am Chem Soc 130:15254–15255

    Article  CAS  Google Scholar 

  70. Takaya J, Sasano K, Iwasawa N (2011) Efficient one-to-one coupling of easily available 1,3-dienes with carbon dioxide. Org Lett 13:1698–1701

    Article  CAS  Google Scholar 

  71. Greenhalgh MD, Thomas SP (2012) Iron-catalyzed, highly regioselective synthesis of α-aryl carboxylic acids from styrene derivatives and CO2. J Am Chem Soc 134:11900–11903

    Article  CAS  Google Scholar 

  72. Ostapowicz TG, Schmitz M, Krystof M, Klankermayer J, Leitner W (2013) Carbon dioxide as a C1 building block for the formation of carboxylic acids by formal catalytic hydrocarboxylation. Angew Chem Int Ed 52:12119–12123

    Article  CAS  Google Scholar 

  73. Wu L, Liu Q, Fleischer I, Jackstell R, Beller M (2014) Ruthenium-catalysed alkoxycarbonylation of alkenes with carbon dioxide. Nat Commun 5:3091

    Google Scholar 

  74. Morimoto T, Fuji K, Tsutsumi K, Kakiuchi K (2002) CO-Transfer carbonylation reactions. a catalytic Pauson-Khand-Type reaction of enynes with aldehydes as a source of carbon monoxide. J Am Chem Soc 124:3806–3807

    Article  CAS  Google Scholar 

  75. Park JH, Cho Y, Chung YK (2010) Rhodium-catalyzed Pauson–Khand-type reaction using alcohol as a source of carbon monoxide. Angew Chem Int Ed 49:5138–5141

    Article  CAS  Google Scholar 

  76. Verendel JJ, Nordlund M, Andersson PG (2013) Selective metal-catalyzed transfer of H2 and CO from polyols to alkenes. ChemSusChem 6:426–429

    Article  CAS  Google Scholar 

  77. Lapidus AL, Pirozhkov SD, Koryakin AA (1978) Catalytic synthesis of propionic acid by carboxylation of ethylene with carbon dioxide. Bull Acad Sci USSR Div Chem Sci 27:2513–2515

    Article  Google Scholar 

  78. González-Sebastián L, Flores-Alamo M, García JJ (2012) Nickel-catalyzed reductive hydroesterification of styrenes using CO2 and MeOH. Organometallics 31:8200–8207

    Article  CAS  Google Scholar 

  79. Greenhalgh MD, Kolodziej A, Sinclair F, Thomas SP (2014) Iron-catalyzed hydromagnesiation: synthesis and characterization of benzylic Grignard reagent intermediate and application in the synthesis of Ibuprofen. Organometallics 33:5811–5819

    Article  CAS  Google Scholar 

  80. Tsuda T, Ueda K, Saegusa T (1974) Carbon dioxide insertion into organocopper and organosilver compounds. J Chem Soc Chem Commun 380–381

    Google Scholar 

  81. Tsuda T, Chujo Y, Saegusa T (1975) Reversible carbon dioxide fixation by organocopper complexes. J Chem Soc Chem Commun 963–964

    Google Scholar 

  82. Fukue Y, Oi S, Inoue Y (1994) Direct synthesis of alkyl 2-alkynoates from alk-1-ynes, CO2, and bromoalkanes catalysed by copper(I) or silver(I) salt. J Chem Soc Chem Commun 2091

    Google Scholar 

  83. Manjolinho F, Arndt M, Gooßen K, Gooßen LJ (2012) Catalytic C–H carboxylation of terminal alkynes with carbon dioxide. ACS Catal 2:2014–2021

    Article  CAS  Google Scholar 

  84. Zhang L, Hou Z (2013) N-heterocyclic carbene (NHC)-copper-catalysed transformations of carbon dioxide. Chem Sci 4:3395–3403

    Article  CAS  Google Scholar 

  85. Gooßen LJ, Rodríguez N, Manjolinho F, Lange PP (2010) Synthesis of propiolic acids via copper-catalyzed insertion of carbon dioxide into the C–H bond of terminal alkynes. Adv Synth Catal 352:2913–2917

    Article  CAS  Google Scholar 

  86. Gooßen LJ, Thiel WR, Rodríguez N, Linder C, Melzer B (2007) Copper-catalyzed protodecarboxylation of aromatic carboxylic acids. Adv Synth Catal 349:2241–2246

    Article  CAS  Google Scholar 

  87. Yu D, Zhang Y (2010) Copper- and copper-N-heterocyclic carbene-catalyzed C─H activating carboxylation of terminal alkynes with CO2 at ambient conditions. Proc Natl Acad Sci 107:20184–20189

    Article  CAS  Google Scholar 

  88. Yu D, Zhang Y (2011) The direct carboxylation of terminal alkynes with carbon dioxide. Green Chem 13:1275–1279

    Article  CAS  Google Scholar 

  89. Li F-W, Suo Q-L, Hong H-L, Zhu N, Wang Y-Q, Han L-M (2014) DBU and copper(I) mediated carboxylation of terminal alkynes using supercritical CO2 as a reactant and solvent. Tetrahedron Lett 55:3878–3880

    Article  CAS  Google Scholar 

  90. Zhang W-Z, Li W-J, Zhang X, Zhou H, Lu X-B (2010) Cu(I)-catalyzed carboxylative coupling of terminal alkynes, allylic chlorides, and CO2. Org Lett 12:4748–4751

    Article  CAS  Google Scholar 

  91. Yuan R, Lin Z (2014) Mechanism for the carboxylative coupling reaction of a terminal alkyne, CO2, and an allylic chloride catalyzed by the Cu(I) complex: a DFT study. ACS Catal 4:4466–4473

    Article  CAS  Google Scholar 

  92. Inamoto K, Asano N, Kobayashi K, Yonemoto M, Kondo Y (2012) A copper-based catalytic system for carboxylation of terminal alkynes: synthesis of alkyl 2-alkynoates. Org Biomol Chem 10:1514–1516

    Article  CAS  Google Scholar 

  93. Yu B, Diao Z-F, Guo C-X, Zhong C-L, He L-N, Zhao Y-N, Song Q-W, Liu A-H, Wang J-Q (2013) Carboxylation of terminal alkynes at ambient CO2 pressure in ethylene carbonate. Green Chem 15:2401–2407

    Article  CAS  Google Scholar 

  94. Fujihara T, Xu T, Semba K, Terao J, Tsuji Y (2011) Copper-catalyzed hydrocarboxylation of alkynes using carbon dioxide and hydrosilanes. Angew Chem Int Ed 50:523–527

    Article  CAS  Google Scholar 

  95. Fujihara T, Tani Y, Semba K, Terao J, Tsuji Y (2012) Copper-catalyzed silacarboxylation of internal alkynes by employing carbon dioxide and silylboranes. Angew Chem Int Ed 51:11487–11490

    Article  CAS  Google Scholar 

  96. Suginome M, Matsuda T, Nakamura H, Ito Y (1999) Regio- and stereoselective of (Z)-β-silylalkenylboranes by silaboration of alkynes catalyzed by palladium and platinum complexes. Tetrahedron 55:8787–8800

    Article  CAS  Google Scholar 

  97. Ohmura T, Oshima K, Suginome M (2008) Palladium-catalysed cis- and trans-silaboration of terminal alkynes: complementary access to stereo-defined trisubstituted alkenes. Chem Commun 1416–1418

    Google Scholar 

  98. Zhang L, Cheng J, Carry B, Hou Z (2012) Catalytic Boracarboxylation of alkynes with diborane and carbon dioxide by an N-heterocyclic carbene copper catalyst. J Am Chem Soc 134:14314–14317

    Article  CAS  Google Scholar 

  99. Takimoto M, Hou Z (2013) Cu-catalyzed formal methylative and hydrogenative carboxylation of alkynes with carbon dioxide: efficient synthesis of α, β-unsaturated carboxylic acids. Chem Eur J 19:11439–11445

    Article  CAS  Google Scholar 

  100. Eghbali N, Eddy J, Anastas PT (2008) Silver-catalyzed one-pot synthesis of arylnaphtalene lactones. J Org Chem 73:6932–6935

    Article  CAS  Google Scholar 

  101. Chopade PR, Louie J (2006) [2 + 2 + 2] Cycloaddition reactions catalyzed by transition metal complexes. Adv Synth Catal 348:2307–2327

    Article  CAS  Google Scholar 

  102. Kotha S, Brahmachary E, Lahiri K (2005) Transition metal catalyzed [2+2+2] cycloaddition and application in organic synthesis. Eur J Org Chem 47414767

    Google Scholar 

  103. Zhang X, Zhang W-Z, Ren X, Zhang L-L, Lu X-B (2011) Ligand-free Ag(I)-catalyzed carboxylation of terminal alkynes with CO2. Org Lett 13:2402–2405

    Article  CAS  Google Scholar 

  104. Zhang X, Zhang W-Z, Shi L-L, Zhu C, Jiang J-L, Lu X-B (2012) Ligand-free Ag(I)-catalyzed carboxylative coupling of terminal alkynes, chloride compounds, and CO2. Tetrahedron 68:9085–9089

    Article  CAS  Google Scholar 

  105. Yu D, Tan MX, Zhang Y (2012) Carboxylation of terminal alkynes with carbon dioxide catalyzed by poly(N-heterocyclic carbene)-supported silver nanoparticles. Adv Synth Catal 354:969–974

    Article  CAS  Google Scholar 

  106. Arndt M, Risto E, Krause T, Gooßen LJ (2012) C–H carboxylation of terminal alkynes catalyzed by low loadings of silver(I)/DMSO at ambient CO2 pressure. ChemCatChem 4:484–487

    Article  CAS  Google Scholar 

  107. Sugawara Y, Yamada W, Yoshida S, Ikeno T, Yamada T (2007) Carbon dioxide-mediated catalytic rearrangement of propargyl alcohols into α, β-unsaturated ketones. J Am Chem Soc 129:12902–12903

    Article  CAS  Google Scholar 

  108. Reppe W, Schweckendiek W (1948) Cyclisierende Polymerisation von Acetylen. III Benzol, Benzolderivate und hydroaromatische Verbindungen. Liebigs Ann Chem 560:104–116

    Article  CAS  Google Scholar 

  109. Duñach E, Périchon J (1988) Electrochemical carboxylation of terminal alkynes catalyzed by nickel complexes: unusual reactivity. J Organomet Chem 353:239–246

    Article  Google Scholar 

  110. Duñach E, Périchon J (1989) Nickel-catalyzed reductive electrocarboxylation of disubstituted alkynes. J Organomet Chem 364:C33–C36

    Article  Google Scholar 

  111. Dérien S, Clinet J-C, Duñach E, Périchon J (1991) First example of direct carbon dioxide incorporation into 1,3-diynes: a highly regio-and stereo-selective nickel-catalysed electrochemical reaction. J Chem Soc Chem Commun 549–550

    Google Scholar 

  112. Dérien S, Duñach E, Périchon J (1991) From stoichiometry to catalysis: electroreductive coupling of alkynes and carbon dioxide with nickel-bipyridine complexes. Magnesium ions as the key for catalysis. J Am Chem Soc 113:8447–8454

    Article  Google Scholar 

  113. Dérien S, Clinet J-C, Duñach E, Périchon J (1992) New C–C bond formation through the nickel-catalysed electrochemical coupling of 1,3-enynes and carbon dioxide. J Organomet Chem 424:213–224

    Article  Google Scholar 

  114. Dérien S, Clinet J-C, Duñach E, Périchon J (1992) Activation of carbon dioxide: nickel-catalyzed electrochemical carboxylation of diynes. J Org Chem 58:2578–2588

    Article  Google Scholar 

  115. Saito S, Nakagawa S, Koizumi T, Hirayama K, Yamamoto Y (1999) Nickel-mediated regio- and chemoselective carboxylation of alkynes in the presence of carbon dioxide. J Org Chem 64:3975–3978

    Article  CAS  Google Scholar 

  116. Graham DC, Bruce MI, Metha GF, Bowie JH, Buntine MA (2008) Regioselective control of the nickel-mediated coupling of acetylene and carbon dioxide – a dft study. J Organomet Chem 693:2703–2710

    Article  CAS  Google Scholar 

  117. Aoki M, Kaneko M, Izumi S, Ukai K, Iwasawa N (2004) Bidentate amidine ligands for nickel(0)-mediated coupling of carbon dioxide with unsaturated hydrocarbons. Chem Commun 2568–2569

    Google Scholar 

  118. Shimizu K, Takimoto M, Sato Y, Mori M (2005) Nickel-catalyzed regioselective synthesis of tetrasubstituted alkene using alkylative carboxylation of disubstituted alkyne. Org Lett 7:195–197

    Article  CAS  Google Scholar 

  119. Takimoto M, Shimizu K, Mori M (2001) Nickel-promoted alkylative or arylative carboxylation of alkynes. Org Lett 3:3345–3347

    Article  CAS  Google Scholar 

  120. Shimizu K, Takimoto, M, Mori M, Sato, Y (2006) Effective synthesis of tamoxifen using nickel-catalyzed arylative carboxylation. Synlett 3182–3184

    Google Scholar 

  121. Li S, Yuan W, Ma S (2011) Highly regio- and stereoselective three-component nickel-catalyzed syn-hydrocarboxylation of alkynes with diethyl zinc and carbon dioxide. Angew Chem Int Ed 50:2578–2582

    Article  CAS  Google Scholar 

  122. Li S, Ma S (2011) Highly selective nickel-catalyzed methyl-carboxylation of homopropargylic alcohols for α-alkylidene-γ-butyrolactones. Org Lett 13:6046–6049

    Article  CAS  Google Scholar 

  123. Tsuda T, Morikawa S, Sumiya R, Saegusa T (1988) Nickel(0)-catalyzed cycloaddition of diynes and carbon dioxide to bicyclic α-pyrones. J Org Chem 53:3140–3145

    Article  CAS  Google Scholar 

  124. Louie J, Gibby EG, Farnworth MV, Tekavec TN (2002) Efficient nickel-catalyzed [2 + 2 + 2] cycloaddition of CO2 and diynes. J Am Chem Soc 124:15188–15189

    Article  CAS  Google Scholar 

  125. Böhm VPW, Gstöttmayr CWK, Weskamp T, Herrmann WA (2001) Catalytic C–C bond formation through selective activation of C–F bonds. Angew Chem Int Ed 40:3387–3389

    Article  Google Scholar 

  126. Tekavec TN, Arif AM, Louie J (2004) Regioselectivity in nickel(0) catalyzed cycloadditions of carbon dioxide with diynes. Tetrahedron 60:7431–7437

    Article  CAS  Google Scholar 

  127. Takimoto M, Mizuno T, Sato Y, Mori M (2005) Nickel-mediated carboxylative cyclization of enynes. Tetrahedron Lett 46:5173–5176

    Article  CAS  Google Scholar 

  128. Takimoto M, Mizuno T, Mori M, Sato Y (2006) Nickel-mediated cyclization of enynes under an atmosphere of carbon dioxide. Tetrahedron 62:7589–7597

    Article  CAS  Google Scholar 

  129. Mizuno T, Oonishi Y, Takimoto M, Sato Y (2011) Total synthesis of (−)-Corynantheidine by nickel-catalyzed carboxylative cyclization of enynes. Eur J Org Chem 2606–2609

    Google Scholar 

  130. Shi M, Nicholas KM (1997) Palladium-catalyzed carboxylation of allyl stannanes. J Am Chem Soc 119:5057

    Article  CAS  Google Scholar 

  131. Johansson R, Wendt O F (2006) Insertion of CO2 into a palladium allyl bond and a Pd(II)catalysed carboxylation of allyl stannanes. Dalton Trans 488–492

    Google Scholar 

  132. Ochiai H, Jang M, Hirano K, Yorimitsu H, Oshima K (2008) Nickel-catalyzed carboxylation of organozinc reagents with CO2. Org Lett 10:2681–2683

    Article  CAS  Google Scholar 

  133. Yeung CS, Dong VM (2008) Beyond aresta’s complex: Ni- and Pd-catalyzed organozinc coupling with CO2. J Am Chem Soc 130:7826–7827

    Article  CAS  Google Scholar 

  134. Takaya J, Tadami S, Ukai K, Iwasawa N (2008) Copper(I)-catalyzed carboxylation of aryl- and alkenylboronic esters. Org Lett 10:2697–2700

    Article  CAS  Google Scholar 

  135. Ohishi T, Nishiura M, Hou Z (2008) Carboxylation of organoboronic esters catalyzed by N-heterocyclic carbene copper(I) complexes. Angew Chem Int Ed Engl 47:5792–5795

    Article  CAS  Google Scholar 

  136. Fujihara T, Nogi K, Xu T, Terao J, Tsuji Y (2012) Nickel-catalyzed carboxylation of aryl and vinyl chlorides employing carbon dioxide. J Am Chem Soc 134:9106–9109

    Article  CAS  Google Scholar 

  137. Correa A, Martín R (2009) Palladium-catalyzed direct carboxylation of aryl bromides with carbon dioxide. J Am Chem Soc 131:15974–15975

    Article  CAS  Google Scholar 

  138. Tran-Vu H, Daugulis O (2013) Copper-catalyzed carboxylation of aryl iodides with carbon dioxide. ACS Catal 3:2414–2420

    Article  CAS  Google Scholar 

  139. Ukai K, Aoki M, Takaya J, Iwasawa N (2006) Rhodium(I)-catalyzed carboxylation of aryl- and alkenylboronic esters with CO2. J Am Chem Soc 128:8706–8707

    Article  CAS  Google Scholar 

  140. Duong HA, Huleatt PB, Tan Q-W, Shuying EL (2013) Regioselective copper-catalyzed carboxylation of allylboronates with carbon dioxide. Org Lett 15:4034–4037

    Article  CAS  Google Scholar 

  141. Ackermann L (2011) Transition-metal-catalyzed carboxylation of C–H bonds. Angew Chem Int Ed 50:3842–3844

    Article  CAS  Google Scholar 

  142. Forman GC, Slawin AMZ, Nolan SP (2010) A versatile cuprous synthon: [Cu(IPr)(OH)] (IPr = 1,3-bis(diisopropylphenyl)imidazol-2-ylidene). Organometallics 29:3966–3972

    Article  CAS  Google Scholar 

  143. Boogaerts IIF, Fortman GC, Furst MRL, Cazin CSJ, Nolan SP (2010) Carboxylation of N–H/C–H bonds using N-heterocyclic carbene copper(I) complexes. Angew Chem Int Ed 49:8674–8677

    Article  CAS  Google Scholar 

  144. Zhang L, Cheng J, Ohishi T, Hou Z (2010) Copper-catalyzed direct carboxylation of C–H bonds with carbon dioxide. Angew Chem Int Ed 49:8670–8673

    Article  CAS  Google Scholar 

  145. Ariafard A, Zarkoob F, Batebi H, Stranger R, Yates BF (2011) DFT studies on the carboxylation of the C–H bond of heteroarenes by copper(I) complexes. Organometallics 30:6218–6224

    Article  CAS  Google Scholar 

  146. Inomata H, Ogata K, Fukuzawa S, Hou Z (2012) Direct C–H carboxylation with carbon dioxide using 1,2,3-triazol-5-ylidene copper(I) complexes. Org Lett 14:3986–3989

    Article  CAS  Google Scholar 

  147. Kikuchi S, Sekine K, Ishida T, Yamada T (2012) C–C bond formation with carbon dioxide promoted by a silver catalyst. Angew Chem Int Ed 51:6989–6992

    Article  CAS  Google Scholar 

  148. Sekine K, Takayanagi A, Kikuchi S, Yamada T (2013) Silver-catalyzed C–C bond formation with carbon dioxide: significant synthesis of dihydroisobenzofurans. Chem Commun 49:11320–11322

    Article  CAS  Google Scholar 

  149. Zhang W-Z, Shi L-L, Liu C, Yang X-T, Wang Y-B, Luo Y, Lu X-B (2014) Sequential carboxylation/intramolecular cyclization reaction of o-alkynyl acetophenone with CO2. Org Chem Front 1:275–283

    Article  CAS  Google Scholar 

  150. Boogaerts IIF, Nolan SP (2010) Carboxylation of C–H bonds using N-heterocyclic carbene gold(I) complexes. J Am Chem Soc 132:8858–8859

    Article  CAS  Google Scholar 

  151. Makida Y, Marelli E, Slawin AMZ, Nolan SP (2014) Nickel-catalysed carboxylation of organoboronates. Chem Commun 50:8010–8013

    Article  CAS  Google Scholar 

  152. León T, Correa A, Martin R (2013) Ni-catalyzed direct carboxylation of benzyl halides with CO2. J Am Chem Soc 135:1221–1224

    Article  CAS  Google Scholar 

  153. Correa A, León T, Martín R (2013) Ni-catalyzed carboxylation of C(sp2)- and C(sp3)-O bonds with CO2. J Am Chem Soc 136:1062–1069

    Article  CAS  Google Scholar 

  154. Liu Y, Cornella J, Martin R (2014) Ni-catalyzed carboxylation of unactivated primary alkyl bromides and sulfonates with CO2. J Am Chem Soc 136:11212–11215

    Article  CAS  Google Scholar 

  155. Franks RJ, Nicholas KM (2000) Palladium-catalyzed carboxylative coupling of allylstannanes and allyl halides. Organometallics 2000:1458–1460

    Article  CAS  Google Scholar 

  156. Hruszkewycz DP, Wu J, Hazari N, Incarvito CD (2011) Palladium(I)-bridging allyl dimers for the catalytic functionalization of CO2. J Am Chem Soc 133:3280–3282

    Article  CAS  Google Scholar 

  157. Wu J, Hazari N (2011) Palladium catalyzed carboxylation of allylstannanes and boranes using CO2. Chem Commun 47:1069–1071

    Article  CAS  Google Scholar 

  158. Amatore C, Jutand A, Khalil F, Nielsen M (1992) Carbon dioxide as a C1 building block. Mechanism of palladium-catalyzed carboxylation of aromatic halides. J Am Chem Soc 114:7076–7085

    Article  CAS  Google Scholar 

  159. Surry DS, Buchwald SL (2011) Dialkylbiaryl phosphines in Pd-catalyzed amination: a user’s guide. Chem Sci 2:27–50

    Article  CAS  Google Scholar 

  160. Jolly PW, Stobbe S, Wilke G, Goddard C, Krüger JC, Sekutowski JC, Tsay Y-H (1978) Reactions of carbon dioxide with allylnickel compounds. Angew Chem Int Ed Engl 17:124–125

    Article  Google Scholar 

  161. Greco GE, Gleason BL, Lowery TA, Kier MJ, Hollander LB, Gibbs SA, Worthy AD (2007) Palladium-catalyzed [3 + 2] cycloaddition of carbon dioxide and trimethylenemethane under mild conditions. Org Lett 9:3817–3820

    Article  CAS  Google Scholar 

  162. Sugimoto H, Kawata I, Taniguchi H, Fujiwara Y (1984) Palladium-catalyzed carboxylation of aromatic compounds with carbon dioxide. J Organomet Chem 266:C44–C46

    Article  CAS  Google Scholar 

  163. Sasano K, Takaya J, Iwasawa N (2013) Palladium(II)-catalyzed direct carboxylation of alkenyl C-H bonds with CO2. J Am Chem Soc 135:10954–10957

    Article  CAS  Google Scholar 

  164. Kolomnikov IS, Gusev AO, Belopotapova TS, Grigoryan MK, Lysyak TV, Struchkov YT, Vol’Pin ME (1974) J Organomet Chem 69:C10

    Article  CAS  Google Scholar 

  165. Albano P, Aresta M, Manassero M (1980) Inorg Chem 19:1069

    Article  CAS  Google Scholar 

  166. Darensbourg DJ, Grötsch G, Wiegreffe P, Rheingold AL (1987) Inorg Chem 26:3827

    Article  CAS  Google Scholar 

  167. Mizuno H, Takaya J, Iwasawa N (2011) Rhodium(I)-catalyzed direct carboxylation of arenes with CO2 via chelation-assisted C–H bond activation. J Am Chem Soc 133:1251–1253

    Article  CAS  Google Scholar 

  168. Mita T, Michigami K, Sato Y (2012) Sequential protocol for C(sp3)-H carboxylation with CO2: transition-metal-catalyzed benzylic C–H silylation and fluoride-mediated carboxylation. Org Lett 14:3462–3465

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Catherine S. J. Cazin or Steven P. Nolan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Brill, M., Lazreg, F., Cazin, C.S.J., Nolan, S.P. (2015). Transition Metal-Catalyzed Carboxylation of Organic Substrates with Carbon Dioxide. In: Lu, XB. (eds) Carbon Dioxide and Organometallics. Topics in Organometallic Chemistry, vol 53. Springer, Cham. https://doi.org/10.1007/3418_2015_110

Download citation

Publish with us

Policies and ethics