Skip to main content

Molecular Iron-Based Oxidants and Their Stoichiometric Reactions

Part of the Topics in Organometallic Chemistry book series (TOPORGAN,volume 50)

Abstract

Molecular iron-based oxidants can oxidize organic substrates under relatively mild conditions, sometimes even in water. If these reactions can be converted to catalytic protocols, they hold great promise for the development of greener methods for this particularly messy class of reaction. For application in organic synthesis, the biggest question is: How selective can the reactions be? The supporting ligands in these compounds are crucial for tuning the electronic structure of a catalytically competent iron-based oxidant and its selectivity in terms of the production of a single, even enantiopure, product. A thorough understanding of the stoichiometric generation of molecular iron-based oxidants and their subsequent reactivity is an important step for the development of new iron-based catalysts. Ideally, and in analogy to many of nature’s iron-based enzymes, their regeneration under catalytic conditions could involve the activation of dioxygen from air. This chapter will focus on the stoichiometric reactions of iron compounds with potential oxidizing agents including O2, peroxides, oxygen-atom donor reagents, and even water, to form iron-based oxidizing species and the reactions of these usually very transient species with oxidizable substrates. This chapter might be especially inspiring for researchers in the field of iron catalyst design.

Keywords

  • Bioinspired
  • C–H activation
  • Epoxidation
  • High-valent iron
  • Nonheme iron
  • O2 activation
  • Oxidant activation
  • Sulfoxidation

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/3418_2015_108
  • Chapter length: 46 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-19396-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   349.99
Price excludes VAT (USA)
Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Scheme 3
Fig. 5
Fig. 6
Scheme 4
Fig. 7
Scheme 5
Scheme 6
Fig. 8
Scheme 7
Scheme 8
Fig. 9
Scheme 9
Scheme 10
Fig. 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Fig. 11
Scheme 15
Fig. 12
Scheme 16
Fig. 13
Fig. 14
Scheme 17
Fig. 15
Fig. 16
Scheme 18
Scheme 19
Fig. 17
Fig. 18
Scheme 20
Fig. 19
Scheme 21
Fig. 20
Scheme 22
Scheme 23
Fig. 21
Scheme 24
Scheme 25
Fig. 22
Fig. 23
Fig. 24

References

  1. Enthaler S, Junge K, Beller M (2008) Angew Chem Int Ed 47:3317–3321

    CAS  Google Scholar 

  2. Talsi EP, Bryliakov KP (2012) Coord Chem Rev 256:1418–1434

    CAS  Google Scholar 

  3. Punniyamurthy T, Velusamy S, Iqbal J (2005) Chem Rev 105:2329–2363

    CAS  Google Scholar 

  4. Srour H, Le Maux P, Chevance S, Simonneaux G (2013) Coord Chem Rev 257:3030–3050

    CAS  Google Scholar 

  5. Caron S, Dugger RW, Ruggeri SG, Ragan JA, Ripin DHB (2006) Chem Rev 106:2943–2989

    CAS  Google Scholar 

  6. Sun X (2013) Organic mechanisms: reactions, methodology, and biological applications. Wiley, Hoboken

    Google Scholar 

  7. Nicolaou KC, Baran PS, Zhong Y-L, Barluenga S, Hunt KW, Kranich R, Vega JA (2002) J Am Chem Soc 124:2233–2244

    CAS  Google Scholar 

  8. Nicolaou KC, Montagnon T, Baran PS, Zhong Y-L (2002) J Am Chem Soc 124:2245–2258

    CAS  Google Scholar 

  9. Bach RD, Canepa C, Winter JE, Blanchette PE (1997) J Org Chem 62:5191–5197

    CAS  Google Scholar 

  10. Lange SJ, Que L Jr (1998) Curr Opin Chem Biol 2:159–172

    CAS  Google Scholar 

  11. Van der Donk WA, Krebs C, Bollinger JM (2010) Curr Opin Struct Biol 20:673–683

    Google Scholar 

  12. Abu-Omar MM, Loaiza A, Hontzeas N (2005) Chem Rev 105:2227–2252

    CAS  Google Scholar 

  13. Costas M, Mehn MP, Jensen MP, Que L (2004) Chem Rev 104:939–986

    CAS  Google Scholar 

  14. Bruijnincx PCA, van Koten G, Gebbink R (2008) Chem Soc Rev 37:2716–2744

    CAS  Google Scholar 

  15. Suslick K (2000) Porphyr Handb 4:41–60

    CAS  Google Scholar 

  16. Torres Pazmiño DE, Winkler M, Glieder A, Fraaije MW (2010) J Biotechnol 146:9–24

    Google Scholar 

  17. Rittle J, Green MT (2010) Science 330:933–937

    CAS  Google Scholar 

  18. Svastits EW, Dawson JH, Breslow R, Gellman SH (1985) J Am Chem Soc 107:6427–6428

    CAS  Google Scholar 

  19. Sono M, Roach MP, Coulter ED, Dawson JH (1996) Chem Rev 96:2841–2888

    CAS  Google Scholar 

  20. Vineyard BD, Knowles WS, Sabacky MJ, Bachman GL, Weinkauff DJ (1977) J Am Chem Soc 99:5946–5952

    CAS  Google Scholar 

  21. Yudin AK (2006) Aziridines and epoxides in organic synthesis. Wiley, Weinheim

    Google Scholar 

  22. Wojaczyńska E, Wojaczyński J (2010) Chem Rev 110:4303–4356

    Google Scholar 

  23. Legros J, Dehli JR, Bolm C (2005) Adv Synth Catal 347:19–31

    CAS  Google Scholar 

  24. Jang HG, Cox DD, Que L Jr (1991) J Am Chem Soc 113:9200–9204

    CAS  Google Scholar 

  25. Cox DD, Benkovic SJ, Bloom LM, Bradley FC, Nelson MJ, Que L, Wallick DE (1988) J Am Chem Soc 110:2026–2032

    CAS  Google Scholar 

  26. Cox DD, Que L (1988) J Am Chem Soc 110:8085–8092

    CAS  Google Scholar 

  27. Pyrz JW, Roe AL, Stern LJ, Que L (1985) J Am Chem Soc 107:614–620

    CAS  Google Scholar 

  28. Chakraborty B, Bhunya S, Paul A, Paine TK (2014) Inorg Chem 53:4899–4912

    CAS  Google Scholar 

  29. Phillips SEV (1978) Nature 273:247–248

    CAS  Google Scholar 

  30. Collman JP, Gagne RR, Reed CA, Robinson WT, Rodley GA (1974) Proc Natl Acad Sci 71:1326–1329

    CAS  Google Scholar 

  31. Momenteau M, Reed CA (1994) Chem Rev 94:659–698

    CAS  Google Scholar 

  32. Mbughuni MM, Chakrabarti M, Hayden JA, Bominaar EL, Hendrich MP, Munck E, Lipscomb JD (2010) Proc Natl Acad Sci U S A 107:16788–16793

    CAS  Google Scholar 

  33. Feig AL, Lippard SJ (1994) Chem Rev 94:759–805

    CAS  Google Scholar 

  34. Korendovych IV, Kryatov SV, Rybak-Akimova EV (2007) Acc Chem Res 40:510–521

    CAS  Google Scholar 

  35. Shan X, Que L (2005) Proc Natl Acad Sci U S A 102:5340–5345

    CAS  Google Scholar 

  36. Korendovych IV, Staples RJ, Reiff WM, Rybak-Akimova EV (2004) Inorg Chem 43:3930–3941

    CAS  Google Scholar 

  37. Chiang C-W, Kleespies ST, Stout HD, Meier KK, Li P-Y, Bominaar EL, Que L, Münck E, Lee W-Z (2014) J Am Chem Soc 136:10846–10849

    CAS  Google Scholar 

  38. Sastri CV, Lee J, Oh K, Lee YJ, Lee J, Jackson TA, Ray K, Hirao H, Shin W, Halfen JA, Kim J, Que L, Shaik S, Nam W (2007) Proc Natl Acad Sci 104:19181–19186

    CAS  Google Scholar 

  39. Horswill EC, Ingold KU (1966) Can J Chem 44:269–277

    CAS  Google Scholar 

  40. Wei M, Musie GT, Busch DH, Subramaniam B (2004) Green Chem 6:387–393

    CAS  Google Scholar 

  41. Çimen Y, Türk H (2007) J Mol Catal A Chem 265:237–243

    Google Scholar 

  42. Zang Y, Elgren TE, Dong Y, Que L (1993) J Am Chem Soc 115:811–813

    CAS  Google Scholar 

  43. Bernal I, Jensen IM, Jensen KB, McKenzie CJ, Toftlund H, Tuchagues JP (1995) J Chem Soc-Dalton Trans 3667–3675

    Google Scholar 

  44. Jensen KB, McKenzie CJ, Nielsen LP, Pedersen JZ, Svendsen HM (1999) Chem Commun 1313–1314

    Google Scholar 

  45. Cho J, Jeon S, Wilson SA, Liu LV, Kang EA, Braymer JJ, Lim MH, Hedman B, Hodgson KO, Valentine JS, Solomon EI, Nam W (2011) Nature 478:502–505

    CAS  Google Scholar 

  46. Hashimoto K, Nagatomo S, Fujinami S, Furutachi H, Ogo S, Suzuki M, Uehara A, Maeda Y, Watanabe Y, Kitagawa T (2002) Angew Chem Int Ed 41:1202–1205

    CAS  Google Scholar 

  47. Wada A, Ogo S, Nagatomo S, Kitagawa T, Watanabe Y, Jitsukawa K, Masuda H (2002) Inorg Chem 41:616–618

    CAS  Google Scholar 

  48. Zang Y, Kim J, Dong YH, Wilkinson EC, Appelman EH, Que L (1997) J Am Chem Soc 119:4197–4205

    CAS  Google Scholar 

  49. Ho RYN, Roelfes G, Feringa BL, Que L (1999) J Am Chem Soc 121:264–265

    CAS  Google Scholar 

  50. Shearer J, Scarrow RC, Kovacs JA (2002) J Am Chem Soc 124:11709–11717

    CAS  Google Scholar 

  51. Widger LR, Jiang Y, McQuilken AC, Yang T, Siegler MA, Matsumura H, Moënne-Loccoz P, Kumar D, de Visser SP, Goldberg DP (2014) Dalton Trans 43:7522–7532

    CAS  Google Scholar 

  52. Rowland JM, Olmstead M, Mascharak PK (2001) Inorg Chem 40:2810–2817

    CAS  Google Scholar 

  53. Bukowski MR, Zhu S, Koehntop KD, Brennessel WW, Que L (2004) J Biol Inorg Chem 9:39–48

    CAS  Google Scholar 

  54. Lubben M, Meetsma A, Wilkinson EC, Feringa B, Que L (1995) Angew Chem Int Ed Engl 34:1512–1514

    CAS  Google Scholar 

  55. Ho RYN, Jr LQ, Roelfes G, Feringa BL, Hermant R, Hage R (1999) Chem Commun 2161–2162

    Google Scholar 

  56. Roelfes G, Vrajmasu V, Chen K et al (2003) Inorg Chem 42:2639–2653

    CAS  Google Scholar 

  57. Simaan AJ, Döpner S, Banse F, Bourcier S, Bouchoux G, Boussac A, Hildebrandt P, Girerd J-J (2000) Eur J Inorg Chem 2000:1627–1633

    Google Scholar 

  58. Martinho M, Dorlet P, Riviere E, Thibon A, Ribal C, Banse F, Girerd JJ (2008) Chemistry 14:3182–3188

    CAS  Google Scholar 

  59. Hazell A, McKenzie CJ, Nielsen LP, Schindler S, Weitzer M (2002) J Chem Soc Dalton Trans 310–317

    Google Scholar 

  60. Horner O, Jeandey C, Oddou J-L, Bonville P, McKenzie CJ, Latour J-M (2002) Eur J Inorg Chem 2002:3278–3283

    Google Scholar 

  61. Chishiro T, Shimazaki Y, Tani F, Tachi Y, Naruta Y, Karasawa S, Hayami S, Maeda Y (2003) Angew Chem Int Ed 42:2788–2791

    CAS  Google Scholar 

  62. Annaraj J, Suh Y, Seo MS, Kim SO, Nam W (2005) Chem Commun 4529–4531

    Google Scholar 

  63. Neese F, Solomon EI (1998) J Am Chem Soc 120:12829–12848

    CAS  Google Scholar 

  64. Kim J, Larka E, Wilkinson EC, Que L (1995) Angew Chem Int Ed Engl 34:2048–2051

    CAS  Google Scholar 

  65. Jensen MP, Costas M, Ho RYN, Kaizer J, Payeras AMI, Munck E, Que L, Rohde JU, Stubna A (2005) J Am Chem Soc 127:10512–10525

    CAS  Google Scholar 

  66. Krishnamurthy D, Kasper GD, Namuswe F, Kerber WD, Sarjeant AAN, Moenne-Loccoz P, Goldberg DP (2006) J Am Chem Soc 128:14222–14223

    CAS  Google Scholar 

  67. Lehnert N, Ho RYN, Que L, Solomon EI (2001) J Am Chem Soc 123:12802–12816

    CAS  Google Scholar 

  68. Gosiewska S, Permentier HP, Bruins AP, Koten G van, Gebbink RJMK (2007) Dalton Trans 3365–3368

    Google Scholar 

  69. Nebe T, Beitat A, Würtele C, Dücker-Benfer C, van Eldik R, McKenzie CJ, Schindler S (2010) Dalton Trans 39:7768–7773

    CAS  Google Scholar 

  70. Rohde JU, Torelli S, Shan XP, Lim MH, Klinker EJ, Kaizer J, Chen K, Nam WW, Que L (2004) J Am Chem Soc 126:16750–16761

    CAS  Google Scholar 

  71. Bryliakov KP, Talsi EP (2014) Coord Chem Rev 276:73–96

    CAS  Google Scholar 

  72. Lenze M, Martin ET, Rath NP, Bauer EB (2013) ChemPlusChem 78:101–116

    CAS  Google Scholar 

  73. Thibon A, Jollet V, Ribal C, Senechal-David K, Billon L, Sorokin AB, Banse F (2012) Chem Eur J 18:2715–2724

    CAS  Google Scholar 

  74. Liu LV, Hong S, Cho J, Nam W, Solomon EI (2013) J Am Chem Soc 135:3286–3299

    CAS  Google Scholar 

  75. Ohta T, Liu J-G, Naruta Y (2013) Coord Chem Rev 257:407–413

    CAS  Google Scholar 

  76. McCandlish E, Miksztal AR, Nappa M, Sprenger AQ, Valentine JS, Stong JD, Spiro TG (1980) J Am Chem Soc 102:4268–4271

    CAS  Google Scholar 

  77. Makhlynets OV, Das P, Taktak S, Flook M, Mas-Balleste R, Rybak-Akimova EV, Que L (2009) Chem Eur J 15:13171–13180

    CAS  Google Scholar 

  78. Taktak S, Flook M, Foxman BM, Lawrence Que J, Rybak-Akimova EV (2005) Chem Commun 5301–5303

    Google Scholar 

  79. Rohde J-U, In J-H, Lim MH, Brennessel WW, Bukowski MR, Stubna A, Müncker E, Nam W, Que L Jr (2003) Science 299:1037–1039

    CAS  Google Scholar 

  80. Klinker EJ, Kaizer J, Brennessel WW, Woodrum NL, Cramer CJ, Que L Jr (2005) Angew Chem Int Ed Engl 44:3690–3694

    CAS  Google Scholar 

  81. Thibon A, England J, Martinho M, Young VG, Frisch JR, Guillot R, Girerd J-J, Münck E, Que L, Banse F (2008) Angew Chem Int Ed 47:7064–7067

    CAS  Google Scholar 

  82. Lacy DC, Gupta R, Stone KL, Greaves J, Ziller JW, Hendrich MP, Borovik AS (2010) J Am Chem Soc 132:12188–12190

    CAS  Google Scholar 

  83. England J, Martinho M, Farquhar ER, Frisch JR, Bominaar EL, Münck E, Que L (2009) Angew Chem Int Ed 48:3622–3626

    CAS  Google Scholar 

  84. Donald WA, McKenzie CJ, O’Hair RAJ (2011) Angew Chem Int Ed 50:8379–8383

    CAS  Google Scholar 

  85. Fukuzumi S, Morimoto Y, Kotani H, Naumov P, Lee Y-M, Nam W (2010) Nat Chem 2:756–759

    CAS  Google Scholar 

  86. Tiago de Oliveira F, Chanda A, Banerjee D, Shan XP, Mondal S, Que L, Bominaar EL, Munck E, Collins TJ (2007) Science 315:835–838

    CAS  Google Scholar 

  87. Nehru K, Seo MS, Kim J, Nam W (2007) Inorg Chem 46:293–298

    CAS  Google Scholar 

  88. Lee Y-M, Hong S, Morimoto Y, Shin W, Fukuzumi S, Nam W (2010) J Am Chem Soc 132:10668–10670

    CAS  Google Scholar 

  89. Vardhaman AK, Sikdar S, Sastri CV (2011) Indian J Chem 50A:427–431

    CAS  Google Scholar 

  90. Vardhaman AK, Barman P, Kumar S, Sastri CV, Kumar D, de Visser SP (2013) Angew Chem Int Ed 52:12288–12292

    CAS  Google Scholar 

  91. Park J, Morimoto Y, Lee Y-M, Nam W, Fukuzumi S (2014) Inorg Chem 53:3618–3628

    CAS  Google Scholar 

  92. Park J, Morimoto Y, Lee Y-M, Nam W, Fukuzumi S (2011) J Am Chem Soc 133:5236–5239

    CAS  Google Scholar 

  93. McDonald AR, Que L (2013) Coord Chem Rev 257:414–428

    CAS  Google Scholar 

  94. Ghosh A, Mitchell DA, Chanda A, Ryabov AD, Popescu DL, Upham EC, Collins GJ, Collins TJ (2008) J Am Chem Soc 130:15116–15126

    CAS  Google Scholar 

  95. Popescu D-L, Vrabel M, Brausam A, Madsen P, Lente G, Fabian I, Ryabov AD, van Eldik R, Collins TJ (2010) Inorg Chem 49:11439–11448

    CAS  Google Scholar 

  96. Groves JT, Kruper WJ, Haushalter RC, Butler WM (1982) Inorg Chem 21:1363–1368

    CAS  Google Scholar 

  97. Pfaff FF, Kundu S, Risch M et al (2011) Angew Chem Int Ed 50:1711–1715

    CAS  Google Scholar 

  98. Wu X, Seo MS, Davis KM, Lee Y-M, Chen J, Cho K-B, Pushkar YN, Nam W (2011) J Am Chem Soc 133:20088–20091

    CAS  Google Scholar 

  99. Collman JP, Chien AS, Eberspacher TA, Zhong M, Brauman JI (2000) Inorg Chem 39:4625–4629

    CAS  Google Scholar 

  100. Vad MS, Lennartson A, Nielsen A, Harmer J, McGrady JE, Frandsen C, Morup S, McKenzie CJ (2012) Chem Commun 48:10880–10882

    CAS  Google Scholar 

  101. Sastri CV, Seo MS, Park MJ, Kim KM, Nam W (2005) Chem Commun 1405–1407

    Google Scholar 

  102. Fillol JL, Codola Z, Garcia-Bosch I, Gomez L, Pla JJ, Costas M (2011) Nat Chem 3:807–813

    CAS  Google Scholar 

  103. Codolà Z, Gómez L, Kleespies ST, Que L Jr, Costas M, Lloret-Fillol J (2015) Nat Commun 6:5865. doi:10.1038/ncomms6865

    Google Scholar 

  104. Wang D, Ray K, Collins MJ et al (2012) Chem Sci 4:282–291

    Google Scholar 

  105. Collins MJ, Ray K, Que L (2006) Inorg Chem 45:8009–8011

    CAS  Google Scholar 

  106. Kotani H, Suenobu T, Lee Y-M, Nam W, Fukuzumi S (2011) J Am Chem Soc 133:3249–3251

    CAS  Google Scholar 

  107. Hohenberger J, Ray K, Meyer K (2012) Nat Commun 3:720

    Google Scholar 

  108. Chandrasekaran P, Stieber SCE, Collins TJ, Que L, Neese F, DeBeer S (2011) Dalton Trans 40:11070–11079

    CAS  Google Scholar 

  109. George SD, Petrenko T, Neese F (2008) J Phys Chem A 112:12936–12943

    Google Scholar 

  110. Grapperhaus CA, Mienert B, Bill E, Weyhermüller T, Wieghardt K (2000) Inorg Chem 39:5306–5317

    CAS  Google Scholar 

  111. Kang Y, Chen H, Jeong YJ, Lai W, Bae EH, Shaik S, Nam W (2009) Chem Eur J 15:10039–10046

    CAS  Google Scholar 

  112. Groves JT, Haushalter RC, Nakamura M, Nemo TE, Evans BJ (1981) J Am Chem Soc 103:2884–2886

    CAS  Google Scholar 

  113. Hrycay EG, Bandiera SM (2012) Arch Biochem Biophys 522:71–89

    CAS  Google Scholar 

  114. Groves JT, Watanabe Y (1988) J Am Chem Soc 110:8443–8452

    CAS  Google Scholar 

  115. Groves JT, Nemo TE, Myers RS (1979) J Am Chem Soc 101:1032–1033

    CAS  Google Scholar 

  116. Ando W, Tajima R, Takata T (1982) Tetrahedron Lett 23:1685–1688

    CAS  Google Scholar 

  117. Nam W (2007) Acc Chem Res 40:522–531

    CAS  Google Scholar 

  118. Goh YM, Nam W (1999) Inorg Chem 38:914–920

    CAS  Google Scholar 

  119. Nam W, Lim MH, Oh SY (2000) Inorg Chem 39:5572–5575

    CAS  Google Scholar 

  120. Nam W, Choi SK, Lim MH, Rohde JU, Kim I, Kim J, Kim C, Que L (2003) Angew Chem Int Ed 42:109–111

    CAS  Google Scholar 

  121. Song WJ, Sun YJ, Choi SK, Nam W (2006) Chem Eur J 12:130–137

    CAS  Google Scholar 

  122. Nam W, Jin SW, Lim MH, Ryu JY, Kim C (2002) Inorg Chem 41:3647–3652

    CAS  Google Scholar 

  123. Nam W, Goh YM, Lee YJ, Lim MH, Kim C (1999) Inorg Chem 38:3238–3240

    CAS  Google Scholar 

  124. Traylor TG, Tsuchiya S, Byun YS, Kim C (1993) J Am Chem Soc 115:2775–2781

    CAS  Google Scholar 

  125. Lennartson A, McKenzie CJ (2012) Angew Chem Int Ed 51:6767–6770

    CAS  Google Scholar 

  126. Kwon E, Cho K-B, Hong S, Nam W (2014) Chem Commun 50:5572–5575

    CAS  Google Scholar 

  127. Brown VJ (2006) Environ Health Perspect 114:A656–A659

    Google Scholar 

  128. Mondal S, Hangun-Balkir Y, Alexandrova L, Link D, Howard B, Zandhuis P, Cugini A, Horwitz CP, Collins TJ (2006) Catal Today 116:554–561

    CAS  Google Scholar 

  129. Shen LQ, Beach ES, Xiang Y, Tshudy DJ, Khanina N, Horwitz CP, Bier ME, Collins TJ (2011) Environ Sci Technol 45:7882–7887

    CAS  Google Scholar 

  130. Do Pham DD, Kelso GF, Yang YZ, Hearn MTW (2012) Green Chem 14:1189–1195

    Google Scholar 

  131. Pham DDD, Kelso GF, Yang Y, Hearn MTW (2014) Green Chem 16:1399–1409

    Google Scholar 

  132. Kojima T, Leising RA, Yan SP, Que L (1993) J Am Chem Soc 115:11328–11335

    CAS  Google Scholar 

  133. Gozzo F (2001) J Mol Catal A Chem 171:1–22

    CAS  Google Scholar 

  134. Comba P, Wunderlich S (2010) Chem Eur J 16:7293–7299

    CAS  Google Scholar 

  135. Noack H, Siegbahn PEM (2007) J Biol Inorg Chem 12:1151–1162

    CAS  Google Scholar 

  136. Lim MH, Rohde JU, Stubna A, Bukowski MR, Costas M, Ho RYN, Munck E, Nam W, Que L (2003) Proc Natl Acad Sci U S A 100:3665–3670

    CAS  Google Scholar 

  137. Vardhaman AK, Sastri CV, Kumar D, de Visser SP (2011) Chem Commun 47:11044–11046

    CAS  Google Scholar 

  138. Fukuzumi S (2013) Coord Chem Rev 257:1564–1575

    CAS  Google Scholar 

  139. Cong Z, Yanagisawa S, Kurahashi T, Ogura T, Nakashima S, Fujii H (2012) J Am Chem Soc 134:20617–20620

    CAS  Google Scholar 

  140. Cong Z, Kurahashi T, Fujii H (2012) J Am Chem Soc 134:4469–4472

    CAS  Google Scholar 

  141. Liu W, Groves JT (2010) J Am Chem Soc 132:12847–12849

    CAS  Google Scholar 

  142. Liu W, Huang X, Cheng M-J, Nielsen RJ, Goddard WA, Groves JT (2012) Science 337:1322–1325

    CAS  Google Scholar 

  143. Soo HS, Sougrati MT, Grandjean F, Long GJ, Chang CJ (2011) Inorg Chim Acta 369:82–91

    CAS  Google Scholar 

  144. Colomban C, Kudrik EV, Afanasiev P, Sorokin AB (2014) J Am Chem Soc 136(32):11321–11330

    CAS  Google Scholar 

  145. Reggelin M, Zur C (2000) Synthesis 2000:1–64

    Google Scholar 

  146. Babcock JM, Young CD, King JE, Kubiszak ME (2013) US Patent Application No. 0288897

    Google Scholar 

  147. Zhdankin VV, Stang PJ (2008) Chem Rev 108:5299–5358

    CAS  Google Scholar 

  148. Arulsamy N, Hodgson DJ (1994) Inorg Chem 33:4531–4536

    CAS  Google Scholar 

  149. Ugalde-Saldívar VM, Sosa-Torres ME, Ortiz-Frade L, Bernès S, Höpfl H (2001) J Chem Soc Dalton Trans 3099–3107

    Google Scholar 

  150. Mekmouche Y, Ménage S, Toia-Duboc C, Fontecave M, Galey J-B, Lebrun C, Pécaut J (2001) Angew Chem Int Ed 40:949–952

    CAS  Google Scholar 

  151. Nielsen A, Larsen FB, Bond AD, McKenzie CJ (2006) Angew Chem Int Ed 45:1602–1606

    CAS  Google Scholar 

  152. Lonnon DG, Craig DC, Colbran SB (2006) Inorg Chem Commun 9:887–890

    CAS  Google Scholar 

  153. Pijper D, Saisaha P, de Boer JW et al (2010) Dalton Trans 39:10375–10381

    CAS  Google Scholar 

  154. Mandon D, Jaafar H, Thibon A (2011) New J Chem 35:1986–2000

    CAS  Google Scholar 

  155. Canals M, Gonzalez-Olmos R, Costas M, Company A (2013) Environ Sci Technol 47:9918–9927

    CAS  Google Scholar 

  156. Sahu S, Quesne MG, Davies CG, Dürr M, Ivanović-Burmazović I, Siegler MA, Jameson GNL, de Visser SP, Goldberg DP (2014) J Am Chem Soc 136:13542–13545

    CAS  Google Scholar 

  157. Grau M, Kyriacou A, Martinez FC, de Wispelaere IM, White AJP, Britovsek GJP (2014) Dalton Trans 43:17108–17119

    CAS  Google Scholar 

  158. Hopmann KH (2014) Inorg Chem 53:2760–2762

    CAS  Google Scholar 

  159. McDonald AR, Bukowski MR, Farquhar ER et al (2010) J Am Chem Soc 132:17118–17129

    CAS  Google Scholar 

  160. Lyakin OY, Ottenbacher RV, Bryliakov KP, Talsi EP (2013) Top Catal 56:939–949

    CAS  Google Scholar 

  161. Saucedo-Vázquez JP, Kroneck PMH, Sosa-Torres ME (2015) Dalton Trans 44(12):5510–5519

    Google Scholar 

  162. Yi C, Jia G, Hou G, Dai Q, Zhang W, Zheng G, Jian X, Yang C-G, Cui Q, He C (2010) Nature 468:330–333

    CAS  Google Scholar 

  163. Groni S, Dorlet P, Blain G, Bourcier S, Guillot R, Anxolabéhère-Mallart E (2008) Inorg Chem 47:3166–3172

    CAS  Google Scholar 

  164. Vad MS, Nielsen A, Lennartson A, Bond AD, McGrady JE, McKenzie CJ (2011) Dalton Trans 40:10698–10707

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine J. McKenzie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

de Sousa, D.P., McKenzie, C.J. (2015). Molecular Iron-Based Oxidants and Their Stoichiometric Reactions. In: Bauer, E. (eds) Iron Catalysis II. Topics in Organometallic Chemistry, vol 50. Springer, Cham. https://doi.org/10.1007/3418_2015_108

Download citation