Skip to main content

Iron Catalysis: Historic Overview and Current Trends

  • Chapter
  • First Online:
Book cover Iron Catalysis II

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 50))

Abstract

Iron catalysis is a growing area of research, as seen by an exponential increase in the publication activities on the topic. This introductory chapter provides a historic overview of the development of iron catalysis including some notable milestones. The advantages of iron, i.e., its abundance, low price, and relative nontoxicity, are discussed, and an overview of the main type of reactions catalyzed by iron is outlined. The advances of heterogeneous iron catalysis (which is not covered in this volume) are exemplified with a few notable cases. Finally, the potential impact of metal impurities in iron sources on the catalytic activity is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frey PA, Reed GH (2012) ACS Chem Biol 7:1477–1481

    CAS  Google Scholar 

  2. Papanikolaou G, Pantopoulos K (2005) Toxicol Appl Pharmacol 202:199–211

    CAS  Google Scholar 

  3. McQuarters AB, Wolf MW, Hunt AP, Lehnert N (2014) Angew Chem Int Ed 53:4750–4752

    CAS  Google Scholar 

  4. Grau M, Britovsek GJP (2015) High-valent iron in biomimetic alkane oxidation catalysis. Top Organomet Chem. doi:10.1007/3418_2015_100

  5. Brewer GJ (2010) Chem Res Toxicol 23:319–326

    CAS  Google Scholar 

  6. Sahrawat KL (2004) J Plant Nutr 27:1471–1504

    CAS  Google Scholar 

  7. U. S. Pharmacopeial Convention (2013) Elemental Impurities Limits http://www.usp.org/usp-nf/key-issues/elemental-impurities. Accessed 4 Mar 2015

  8. European Medicines Agency (2008) Guideline On The Specification Limits For Residues Of Metal Catalysts Or Metal Reagents http://www.ema.europa.eu/ema/pages/includes/document/open_document.jsp?webContentId=WC500003586. Accessed 25 Feb 2015

  9. French JM, Griffiths JR, Diver ST (2015) Adv Synth Catal 357:361–365

    CAS  Google Scholar 

  10. Bergbreiter DE, Tian J, Hongfa C (2009) Chem Rev 109:530–582

    CAS  Google Scholar 

  11. Schlögl R (2003) Angew Chem Int Ed 42:2004–2008

    Google Scholar 

  12. Kandemir T, Schuster ME, Senyshyn A, Behrens M, Schlögl R (2013) Angew Chem Int Ed 52:12723–12726

    CAS  Google Scholar 

  13. Vojvodic A, Medford AJ, Studt F, Abild-Pedersen F, Khan TS, Bligaard T, Nørskov JK (2014) Chem Phys Lett 598:108–112

    CAS  Google Scholar 

  14. Sivasankar C, Baskaran S, Tamizmani M, Ramakrishna K (2014) J Organomet Chem 752:44–58

    CAS  Google Scholar 

  15. Anderson JS, Rittle J, Peters JC (2013) Nature 501:84–88

    CAS  Google Scholar 

  16. Khodakov AY, Chu W, Fongarland P (2007) Chem Rev 107:1692–1744

    CAS  Google Scholar 

  17. Schulz H (2013) Catal Today 214:140–151

    CAS  Google Scholar 

  18. Jacobs G, Ma W, Gao P, Todic B, Bhatelia T, Bukur DB, Davis BH (2013) Catal Today 214:100–139

    CAS  Google Scholar 

  19. Massoudi R, Kim JH, King RB, King AD (1987) J Am Chem Soc 109:7428–7433

    CAS  Google Scholar 

  20. Osborn JA, Jardine FH, Young JF, Wilkinson GJ (1966) J Chem Soc A 88:1711–1732

    Google Scholar 

  21. Knowles WS, Sabacky MJ (1968) Chem Commun 1445–1446

    Google Scholar 

  22. Halpern J, Riley DP, Chan ASC, Pluth JJJ (1977) J Am Chem Soc 99:8055–8057

    CAS  Google Scholar 

  23. Tang W, Zhang X (2003) Chem Rev 103:3029–3069

    CAS  Google Scholar 

  24. Vavon G, Mottez P (1944) C R Hebd Seances Acad Sci 218:557–559

    CAS  Google Scholar 

  25. Groves JT, Nemo TE, Myers RS (1979) J Am Chem Soc 101:1032–1033

    CAS  Google Scholar 

  26. Small BL, Brookhart M, Bennett AMA (1998) J Am Chem Soc 120:4049–4050

    CAS  Google Scholar 

  27. Britovsek GJP, Gibson VC, Kimberley BS, Maddox PJ, McTavish SJ, Solan GA, White AJP, Williams DJ (1998) Chem Commun 849

    Google Scholar 

  28. Burcher B, Breuil P-AR, Magna L, Olivier-Bourbigou H (2015) Iron-catalyzed oligomerization and polymerization reactions. Top Organomet Chem. doi:10.1007/3418_2015_101

  29. Bedford RB, Brenner PB (2015) The development of iron catalysts for crosscoupling reactions. Top Organomet Chem. doi:10.1007/3418_2015_99

  30. Sun X, Li J, Huang X, Sun C (2012) Curr Inorg Chem 2:64–85

    CAS  Google Scholar 

  31. Czaplik WM, Mayer M, Cvengroš J, Jacobi von Wangelin A (2009) ChemSusChem 2:396–417

    CAS  Google Scholar 

  32. Sarhan AAO, Bolm C (2009) Chem Soc Rev 38:2730–2744

    CAS  Google Scholar 

  33. Bauer EB (2008) Curr Org Chem 12:1341–1369

    CAS  Google Scholar 

  34. Enthaler S, Junge K, Beller M (2008) Angew Chem Int Ed 47:3317–3321

    CAS  Google Scholar 

  35. Padrón JI, Martín VS (2011) Top Organomet Chem 33:1–26

    Google Scholar 

  36. Che C-M, Zhou C-Y, Wong EL-M (2011) Top Organomet Chem 33:111–138

    CAS  Google Scholar 

  37. Chow TW-S, Chen G-Q, Liu Y, Zhou C-Y, Che C-M (2012) Pure Appl Chem 84:1685–1704

    CAS  Google Scholar 

  38. Costas M, Mehn MP, Jensen MP, Que L (2004) Chem Rev 104:939–986

    CAS  Google Scholar 

  39. Mancheño OG (2011) Angew Chem Int Ed 50:2216–2218

    Google Scholar 

  40. Cahiez G, Duplais C, Moyeux A (2007) Org Lett 9:3253–3254

    CAS  Google Scholar 

  41. Bedford RB, Brenner PB, Carter E, Clifton J, Cogswell PM, Gower NJ, Haddow MF, Harvey JN, Kehl JA, Murphy DM, Neeve EC, Neidig ML, Nunn J, Snyder BER, Taylor J (2014) Organometallics 33:5767–5780

    CAS  Google Scholar 

  42. Nagano T, Hayashi T (2004) Org Lett 6:1297–1299

    CAS  Google Scholar 

  43. Li Z, Cao L, Li C-J (2007) Angew Chem Int Ed 46:6505–6507

    CAS  Google Scholar 

  44. Yang K, Song Q (2015) Org Lett 17:548–551

    CAS  Google Scholar 

  45. Kharasch MS, Tawney PO (1941) J Am Chem Soc 63:2308–2316

    CAS  Google Scholar 

  46. Tamura M, Kochi J (1971) J Am Chem Soc 93:1487–1489

    CAS  Google Scholar 

  47. Nakamura M, Yoshikai N (2010) J Org Chem 75:6061–6067

    CAS  Google Scholar 

  48. Bedford RB, Brenner PB, Carter E, Carvell TW, Cogswell PM, Gallagher T, Harvey JN, Murphy DM, Neeve EC, Nunn J, Pye DR (2014) Chem Eur J 20:7935–7938

    CAS  Google Scholar 

  49. Hatakeyama T, Hashimoto T, Kathriarachchi KKADS, Zenmyo T, Seike H, Nakamura M (2012) Angew Chem Int Ed 51:8834

    CAS  Google Scholar 

  50. Darcel C, Sortais J-B, Quintero Duque S (2014) Iron-catalyzed cross-dehydrogenative-coupling reactions. In: Li C-J (ed) From C–H to C–C bonds: cross-dehydrogenative-coupling. The Royal Society of Chemistry, Cambridge, pp 67–92

    Google Scholar 

  51. Itazaki M, Nakazawa H (2015) Iron-catalyzed cross-dehydrogenative-coupling reactions. Top Organomet Chem. doi:10.1007/3418_2015_105

  52. Renaud J-L, Gaillard S (2015) Ironcatalyzed carbon-nitrogen, carbon-phosphorus and carbon-sulfur bond formation and cyclization reactions. Top Organomet Chem. doi:10.1007/3418_2015_103

  53. Correa A, Carril M, Bolm B (2008) Chem Eur J 14:10919–10922

    CAS  Google Scholar 

  54. Wang J, Liu C, Yuana J, Lei A (2014) Chem Commun 50:4736–4739

    CAS  Google Scholar 

  55. Fukumoto K, Kasa M, Oya T, Itazaki M, Nakazawa H (2011) Organometallics 30:3461–3463

    CAS  Google Scholar 

  56. Fenton HJH (1894) Chem Soc J Lond 65:899–910

    CAS  Google Scholar 

  57. Garrido-Ramírez EG, Theng BKG, Mora ML (2010) Appl Clay Sci 47:182–192

    Google Scholar 

  58. Barton DHR, Doller D (1992) Acc Chem Res 25:504–512

    CAS  Google Scholar 

  59. Stavropoulos P, Çelenligil-Çetin R, Tapper AE (2001) Acc Chem Res 34:745–752

    CAS  Google Scholar 

  60. Labinger JA (2004) J Mol Cat A 220:27–35

    CAS  Google Scholar 

  61. Bordeaux M, Galarneau A, Drone J (2012) Angew Chem Int Ed 51:10712–10723

    CAS  Google Scholar 

  62. de Montellano PRO (2010) Chem Rev 110:932–948

    Google Scholar 

  63. Bruijnincx PCA, van Koten G, Klein Gebbink RJM (2008) Chem Soc Rev 37:2716–2744

    CAS  Google Scholar 

  64. de Sousa DP, McKenzie CJ (2015) Molecular iron-based oxidants and their stoichiometric reactions. Top Organomet Chem. doi:10.1007/3418_2015_108

  65. Talsi EP, Bryliakov KP (2012) Coord Chem Rev 256:1418–1434

    CAS  Google Scholar 

  66. Schröder K, Enthaler S, Bitterlich B, Schulz T, Spannenberg A, Tse MK, Junge K, Beller M (2009) Chem Eur J 15:5471–5481

    Google Scholar 

  67. Enthaler S (2011) ChemCatChem 3:1929–1934

    CAS  Google Scholar 

  68. Lawrence Q, Tolman WB (2008) Nature 455:333–340

    Google Scholar 

  69. Crabtree RH (2015) Chem Rev 115:127–150

    CAS  Google Scholar 

  70. Kumar D, de Visser SP, Shaik S (2005) J Am Chem Soc 127:8204–8213

    CAS  Google Scholar 

  71. Lenze M, Bauer EB (2013) Chem Commun 49:5889–5891

    CAS  Google Scholar 

  72. Shaw S, White JD (2014) J Am Chem Soc 136:13578–13581

    CAS  Google Scholar 

  73. Junge K, Schröder K, Beller M (2011) Chem Commun 47:4849–4859

    CAS  Google Scholar 

  74. Morris RH (2009) Chem Soc Rev 38:2282–2291

    CAS  Google Scholar 

  75. Gaillard S, Renaud J-L (2008) ChemSusChem 1:505–509

    CAS  Google Scholar 

  76. Darcel C, Sortais J-B (2015) Iron-catalysed reduction and hydroelementation reactions. Top Organomet Chem. doi:10.1007/3418_2015_104

  77. Xie J-H, Bao DH, Zhou Q-L (2015) Synthesis 47:460–471

    CAS  Google Scholar 

  78. Sues PE, Demmans KZ, Morris RH (2014) Dalton Trans 43:7650–7667

    CAS  Google Scholar 

  79. Ollevier T, Keipour H (2015) Enantioselective iron catalysts. Top Organomet Chem. doi:10.1007/3418_2015_102

  80. Zhang M, Zhang A (2010) Appl Organomet Chem 24:751–757

    CAS  Google Scholar 

  81. Trovitch RJ (2014) Synlett 25:1638–1642

    Google Scholar 

  82. Casey CP, Guan H (2007) J Am Chem Soc 129:5816–5817

    CAS  Google Scholar 

  83. Ruddy AR, Kelly CM, Crawford SM, Wheaton CA, Sydora OL, Small BL, Stradiotto M, Turculet L (2013) Organometallics 32:5581–5588

    CAS  Google Scholar 

  84. Xiao T, Zhang W, Lai J, Sun W-H (2011) C R Chim 14:851–855

    CAS  Google Scholar 

  85. Zhang Z, Chen A, Zhang X, Li H, Ke Y, Lu Y, Hu Y (2005) J Mol Catal A 230:1–8

    CAS  Google Scholar 

  86. Gopalaiah K (2013) Chem Rev 113:3248–3296

    CAS  Google Scholar 

  87. Darwish M, Wills M (2012) Catal Sci Technol 2:243–255

    CAS  Google Scholar 

  88. Groves JT, Myers RS (1983) J Am Chem Soc 105:5791–5796

    CAS  Google Scholar 

  89. Davies SG (1988) Pure Appl Chem 60:13–20

    CAS  Google Scholar 

  90. Lee W-T, Juarez RA, Scepaniak JJ, Muñoz SB, Dickie DA, Wang H, Smith JM (2014) Inorg Chem 53:8425–8430

    CAS  Google Scholar 

  91. Buchwald SL, Bolm C (2009) Angew Chem Int Ed 48:5586–5587

    CAS  Google Scholar 

  92. Correa A, Carril M, Bolm C (2008) Chem Eur J 14:10919–10922

    CAS  Google Scholar 

  93. Taillefer M, Xia N, Ouali A (2007) Angew Chem Int Ed 46:934–936

    CAS  Google Scholar 

  94. Thomé I, Nijs A, Bolm C (2012) Chem Soc Rev 41:979–987

    Google Scholar 

  95. Mao J, Xie G, Wu M, Guo J, Ji A (2008) Adv Synth Catal 350:2477

    CAS  Google Scholar 

  96. Rao Volla CM, Vogel P (2008) Tetrahedron Lett 49:5961

    CAS  Google Scholar 

  97. Huang H, Jiang H, Chen H, Liu H (2008) J Org Chem 73:9061

    CAS  Google Scholar 

  98. Correa A, Bolm C (2008) Adv Synth Catal 350:391–394

    CAS  Google Scholar 

  99. Chinchilla R, Nájera C (2011) Chem Soc Rev 40:5084–5121

    CAS  Google Scholar 

  100. Bedford RB, Welch SL (2001) Chem Commun 129–130

    Google Scholar 

  101. Bedford RB, Hazelwood, ZL, Norton PN, Hursthouse MB (2003) Dalton Trans 4164–4174

    Google Scholar 

  102. Arancon RAD, Lin CSK, Vargas C, Luque R (2014) Org Biomol Chem 12:10–35

    Google Scholar 

  103. Kylmälä T, Valkonen A, Rissanen K, Xu Y, Franzén R (2008) Tetrahedron Lett 49:6679–6681

    Google Scholar 

  104. Bedford RB, Nakamura M, Gower NJ, Haddow MF, Hall MA, Huwe M, Hashimoto T, Okopie RA (2009) Tetrahedron Lett 50:6110–6111

    CAS  Google Scholar 

  105. Vallée F, Mousseau JJ, Charette AB (2010) J Am Chem Soc 132:1514–1516

    Google Scholar 

  106. Atack TC, Lecker RM, Cook SP (2014) J Am Chem Soc 136:9521–9523

    CAS  Google Scholar 

  107. López-Pérez A, Adrio J, Carretero JC (2009) Org Lett 11:5514–5517

    Google Scholar 

  108. Ackermann L, Potukuchi HK, Kapdi AR, Schulzke C (2010) Chem Eur J 16:3300–3303

    CAS  Google Scholar 

  109. Jana R, Pathak TP, Sigman MS (2011) Chem Rev 111:1417–1492

    CAS  Google Scholar 

  110. Zhang K, Kogelschatz U, Eliasson B (2001) Energy Fuel 15:395–402

    CAS  Google Scholar 

  111. Xu B-Q (2014) Natl Sci Rev 1:325–326

    Google Scholar 

  112. Guo X, Fang G, Li G, Ma H, Fan H, Yu L, Ma C, Wu X, Deng D, Wei M, Tan D, Si R, Zhang S, Li J, Sun L, Tang Z, Pan X, Bao X (2014) Science 344:616–619

    CAS  Google Scholar 

  113. Parent AR, Crabtree RH, Brudvig GW (2013) Chem Soc Rev 42:2247–2252

    CAS  Google Scholar 

  114. Parent AR, Saka K (2014) ChemSusChem 7:2070–2080

    CAS  Google Scholar 

  115. Smith RDL, Prévot MS, Fagan RD, Zhang Z, Sedach PA, Siu MKJ, Trudel S, Berlinguette CP (2013) Science 340:60–63

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eike B. Bauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bauer, E.B. (2015). Iron Catalysis: Historic Overview and Current Trends. In: Bauer, E. (eds) Iron Catalysis II. Topics in Organometallic Chemistry, vol 50. Springer, Cham. https://doi.org/10.1007/3418_2015_107

Download citation

Publish with us

Policies and ethics