Skip to main content

Iron-Catalyzed Cross-Dehydrogenative-Coupling Reactions

Part of the Topics in Organometallic Chemistry book series (TOPORGAN,volume 50)

Abstract

Cross-dehydrogenative-coupling (CDC) reactions involving C–H bond activation are powerful tools for C–C bond formation and are highly significant from the perspective of atom economy. A variety of carbon–carbon bond-forming reactions utilizing various coupling partners are known today. Iron-catalyzed organic syntheses have attracted considerable attention because iron is an abundant, inexpensive, and environmentally benign metal. This chapter summarizes the development of iron-catalyzed CDC reactions, the reaction mechanism, and the role of the Fe species in the catalytic cycle in the period from 2007 to 2014.

Keywords

  • Catalyst
  • Iron
  • Cross-dehydrogenative coupling
  • Oxidant
  • Radical

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/3418_2015_105
  • Chapter length: 35 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-19396-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   349.99
Price excludes VAT (USA)
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Fig. 1
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Fig. 2
Scheme 15
Fig. 3
Scheme 16
Fig. 4
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30
Scheme 31
Fig. 5
Scheme 32
Scheme 33
Scheme 34
Scheme 35
Scheme 36
Scheme 37
Scheme 38
Scheme 39
Scheme 40
Scheme 41
Scheme 42
Scheme 43
Scheme 44
Scheme 45
Scheme 46
Scheme 47
Scheme 48
Scheme 49

Abbreviations

Å:

Ångström

acac:

Acetylacetone

Boc:

tert-Butoxycarbonyl

cat.:

Catalyst

CDC:

Cross-dehydrogenative coupling

Cp:

Cyclopentadienyl

dbm:

Dibenzoylmethane

DCE:

1,2-Dichloroethane

DDQ:

2,3-Dichloro-5,6-dicyano-p-benzoquinone

dr :

Diastereomeric ratio

equiv.:

Equivalent(s)

Et:

Ethyl

h:

Hour(s)

Me:

Methyl

min:

Minute(s)

MS:

Molecular sieves

Pr:

n-Propyl

Ph:

Phenyl

pin:

Pinacol

rt:

Room temperature

Bu:

tert-Butyl

SET:

Single-electron transfer

TEMPO:

2,2,6,6-Tetramethylpiperidine-1-oxyl

TfO:

Trifluoromethanesulfonate

TON:

Turnover number

Ts:

4-Toluensulfonyl

References

  1. Diederich F, Stang PJ (eds) (2004) Metal-catalyzed cross-coupling reactions. Wiley, Weinheim

    Google Scholar 

  2. Seechurn CCCJ, Kitching MO, Colacot TJ, Snieckus V (2012) Angew Chem Int Ed 51:5062

    CrossRef  Google Scholar 

  3. Beletskaya IP, Cheprakov AV (2009) In: Oestreich M (ed) The Mizoroki-Heck reaction. Wiley, Chichester

    Google Scholar 

  4. Torborg C, Beller M (2009) Adv Synth Catal 351:3027

    CAS  CrossRef  Google Scholar 

  5. Beller M (2011) Chem Soc Rev 40:4891

    CAS  CrossRef  Google Scholar 

  6. Li C-J (2009) Acc Chem Res 42:335, and the references therein

    CAS  CrossRef  Google Scholar 

  7. Guo X, Li Z, Li C-J (2010) Prog Chem 22:1434

    CAS  Google Scholar 

  8. Li Z, Cao L, Li C-J (2007) Angew Chem Int Ed 46:6505

    CAS  CrossRef  Google Scholar 

  9. Zhang Y, Li C-J (2007) Eur J Org Chem 4654

    Google Scholar 

  10. Huyser ES, Munson LR (1965) J Org Chem 30:1436

    CAS  CrossRef  Google Scholar 

  11. Li Z, Yu R, Li H (2008) Angew Chem Int Ed 47:7497

    CAS  CrossRef  Google Scholar 

  12. Mbuvi HM, Woo LK (2008) Organometallics 27:637

    CAS  CrossRef  Google Scholar 

  13. Li Y, Huang J-S, Zhou Z-Y, Che C-M, You X-Z (2002) J Am Chem Soc 124:13185

    CAS  CrossRef  Google Scholar 

  14. Li H, He Z, Guo X, Li W, Zhao X, Li Z (2009) Org Lett 11:4176

    CAS  CrossRef  Google Scholar 

  15. Zeng T, Song G, Moores A, Li C-J (2010) Synlett 13:2002

    Google Scholar 

  16. Hudson R, Ishikawa S, Li C-J, Moores A (2013) Synlett 24:1637

    CAS  CrossRef  Google Scholar 

  17. Li Z, Li C-J (2005) J Am Chem Soc 127:3672

    CAS  CrossRef  Google Scholar 

  18. Baslè O, Li C-J (2009) Chem Commun 4124

    Google Scholar 

  19. Evans DA, Seidel D, Rueping M, Lam HW, Shaw JT, Downey CW (2003) J Am Chem Soc 125:12692

    CAS  CrossRef  Google Scholar 

  20. Shen Y, Li M, Wang S, Zhan T, Tan Z, Guo C-C (2009) Chem Commun 953

    Google Scholar 

  21. Richter H, Mancheño OG (2010) Eur J Org Chem 4460

    Google Scholar 

  22. Xu YC, Lebeau E, Gillard JW, Attardo G (1993) Tetrahedron Lett 34:3841

    CAS  CrossRef  Google Scholar 

  23. Lou S-J, Xu D-Q, Shen D-F, Wang Y-F, Liu Y-K, Xu Z-Y (2012) Chem Commun 48:11993

    CAS  CrossRef  Google Scholar 

  24. Qian B, Guo S, Shao J, Zhu Q, Yang L, Xia C, Huang H-M (2010) J Am Chem Soc 132:3650

    CAS  CrossRef  Google Scholar 

  25. Rueping M, Tolstoluzhsky N (2011) Org Lett 13:1095

    CAS  CrossRef  Google Scholar 

  26. Komai H, Yoshino T, Matsunaga S, Kanai M (2011) Org Lett 13:1706

    CAS  CrossRef  Google Scholar 

  27. Song G-Y, Su Y, Gong X, Han K-L, Li X-W (2011) Org Lett 13:1968

    CAS  CrossRef  Google Scholar 

  28. Qian B, Xie P, Xie Y-J, Huang H-M (2011) Org Lett 13:2580

    CAS  CrossRef  Google Scholar 

  29. Tsuchimoto T, Ozawa Y, Negoro R, Shirakawa E, Kawakami Y (2004) Angew Chem Int Ed 43:4231

    CAS  CrossRef  Google Scholar 

  30. Ghobrial M, Harhammer K, Mihovilovic MD, Schnürch M (2010) Chem Commun 46:8836

    CAS  CrossRef  Google Scholar 

  31. Shirakawa E, Uchiyama N, Hayashi T (2011) J Org Chem 76:25

    CAS  CrossRef  Google Scholar 

  32. Wei Y, Ding H-Q, Lin S-X, Liang F-S (2011) Org Lett 13:1674

    CAS  CrossRef  Google Scholar 

  33. Minisci F (1973) Synthesis 1

    Google Scholar 

  34. Minisci F, Porta O (1974) In: Katritzky AR (ed) Advances in heterocyclic chemistry, vol. 16. Academic, New York, p 123

    Google Scholar 

  35. Minisci F (1976) Top Curr Chem 62:1

    Google Scholar 

  36. Minisci F, Porta O (1980) Chim Ind 62:769

    CAS  Google Scholar 

  37. Minisci F (1984) In: Graziani M (ed) Fundamental research in homogenous catalysis, vol 4. Plenum, New York, p 173

    Google Scholar 

  38. Minisci F (1986) In: Viehe HG (ed) Substituent effects in radical chemistry. Reidel, Boston, p 391

    Google Scholar 

  39. Minisci F, Vismara E (1987) In: Chizhov O (ed) Organic synthesis: modern trends. Blackwell Scientific, Oxford, p 229

    Google Scholar 

  40. Minisci F, Fontana F, Vismara E (1989) Heterocycles 28:489

    CAS  CrossRef  Google Scholar 

  41. Minisci F, Fontana F, Vismara EJ (1990) Heterocycl Chem 27:79

    CAS  CrossRef  Google Scholar 

  42. Li Y-Z, Li B-J, Lu X-Y, Lin S, Shi Z-J (2009) Angew Chem Int Ed 48:3817

    CAS  CrossRef  Google Scholar 

  43. Song C-X, Cai G-X, Farrell TR, Jiang Z-P, Li H, Gan L-B, Shi Z-J (2009) Chem Commun 6002

    Google Scholar 

  44. Guo X, Pan S, Liu J, Li Z (2009) J Org Chem 74:8848

    CAS  CrossRef  Google Scholar 

  45. Ono N (ed) (2001) The nitro group in organic synthesis. Wiley, New York

    Google Scholar 

  46. Guo X, Yu R, Li H, Li Z (2009) J Am Chem Soc 131:17387

    CAS  CrossRef  Google Scholar 

  47. Yoshikai N, Matsumoto A, Norinder J, Nakamura E (2009) Angew Chem Int Ed 48:2925

    CAS  CrossRef  Google Scholar 

  48. Norinder J, Matsumoto A, Yoshikai N, Nakamura E (2008) J Am Chem Soc 130:5858

    CAS  CrossRef  Google Scholar 

  49. Liu H, Cao L, Sun J, Fosseyab JS, Deng W (2012) Chem Commun 48:2674

    CAS  CrossRef  Google Scholar 

  50. Wang Z, Mo H, Cheng D, Bao W (2012) Org Biomol Chem 10:4249

    CAS  CrossRef  Google Scholar 

  51. Pan S, Liu J, Li H, Wang Z, Guo X, Li Z (2010) Org Lett 12:1932

    CAS  CrossRef  Google Scholar 

  52. Liu X, Chen Y, Li K, Wang D, Chen B (2012) Chin J Chem 30:2285

    CAS  CrossRef  Google Scholar 

  53. Li Y, Cao L, Luo X, Deng W (2012) Chin J Chem 30:2834

    CAS  CrossRef  Google Scholar 

  54. Sun M, Zhang T, Bao W (2013) J Org Chem 78:8155

    CAS  CrossRef  Google Scholar 

  55. Yang J, Wang Z, Pan F, Li Y, Bao W (2010) Org Biomol Chem 8:2975

    CAS  CrossRef  Google Scholar 

  56. Parnes R, Kshirsagar UA, Werbeloff A, Regev C, Pappo D (2012) Org Lett 14:3324

    CAS  CrossRef  Google Scholar 

  57. Kshirsagar UA, Parnes R, Goldshtein H, Ofir R, Zarivach R, Pappo D (2013) Chem Eur J 19:13575

    CAS  CrossRef  Google Scholar 

  58. Volla CMR, Vogel P (2009) Org Lett 11:1701

    CAS  CrossRef  Google Scholar 

  59. Horner L, Junkermann H (1955) Ann Chem Justus Liebigs 591:53

    CAS  CrossRef  Google Scholar 

  60. Horner L, Kirmse W (1955) Ann Chem Justus Liebigs 597:48

    CAS  CrossRef  Google Scholar 

  61. Li P, Zhang Y, Wang L (2009) Chem Eur J 15:2045

    CAS  CrossRef  Google Scholar 

  62. Liu P, Wang Z, Lin J, Hu X (2012) Eur J Org Chem 1583

    Google Scholar 

  63. Chandrasekharam M, Chiranjeevi B, Gupta KSV, Sridhar B (2011) J Org Chem 76:10229

    CAS  CrossRef  Google Scholar 

  64. Griffin BW (1978) Arch Biochem Biophys 190:850

    CAS  CrossRef  Google Scholar 

  65. Chiranjeevi B, Koyyada G, Prabusreenivasan S, Kumar V, Sujitha P, Kumar CG, Sridhar B, Shaike S, Chandrasekharam M (2013) RSC Adv 3:16475

    CAS  CrossRef  Google Scholar 

  66. Qian B, Zhang G, Ding Y, Huang H (2013) Chem Commun 49:9839

    CAS  CrossRef  Google Scholar 

  67. Grau M, Britovsek GJP (2015) High-valent iron in biomimetic alkane oxidation catalysis. Top Organomet Chem. doi:10.1007/3418_2015_100

  68. Chang S, Scharre E, Brookhart M (1998) J Mol Catal A 130:107

    CAS  CrossRef  Google Scholar 

  69. Rommel S, Hettmanczyk L, Klein JEMN, Plietker B (2014) Chem Asian J 9:2140

    CAS  CrossRef  Google Scholar 

  70. Teo AKL, Fan WY (2014) Chem Commun 50:7191

    CrossRef  Google Scholar 

  71. Fukumoto K, Kasa M, Nakazawa H (2014) Accepted in Inorg Chim Acta. doi:10.1016/j.ica.2015.02.019

  72. Fukumoto K, Kasa M, Oya T, Itazaki M, Nakazawa H (2011) Organometallics 30:3461

    CAS  CrossRef  Google Scholar 

  73. Ito M, Itazaki M, Nakazawa H (2014) J Am Chem Soc 136:6183

    CAS  CrossRef  Google Scholar 

  74. Marciniec B, Walkowiak J (2008) Chem Commun 2695

    Google Scholar 

  75. Soraru GD, Dallabona N, Gervais C, Babonneau F (1999) Chem Mater 11:910

    CAS  CrossRef  Google Scholar 

  76. Fujinami T, Mehta MA, Sugie K, Mori K (2000) Electrochim Acta 45:1181

    CAS  CrossRef  Google Scholar 

  77. Wang Q, Fu L, Hu X, Zhang Z, Xie Z (2006) J Appl Polym Sci 99:719

    CAS  CrossRef  Google Scholar 

  78. Peña-Alonso R, Mariotto G, Gervais C, Babonneau F, Soraru GD (2007) Chem Mater 19:5694

    CrossRef  Google Scholar 

Download references

Acknowledgment

We would like to show our respect for the great efforts of all authors, whose names were listed in the references. We wish to thank Dr. Yuji Suzaki for the reference collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Nakazawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Itazaki, M., Nakazawa, H. (2015). Iron-Catalyzed Cross-Dehydrogenative-Coupling Reactions. In: Bauer, E. (eds) Iron Catalysis II. Topics in Organometallic Chemistry, vol 50. Springer, Cham. https://doi.org/10.1007/3418_2015_105

Download citation