Skip to main content

Enantioselective Iron Catalysts

Part of the Topics in Organometallic Chemistry book series (TOPORGAN,volume 50)

Abstract

Synthetic organic transformations catalyzed by iron complexes have attracted considerable attention because of an enviable list of assets: iron is an ubiquitous, inexpensive, and environmentally benign metal. It has been documented that various chiral iron complexes can be used in many reactions such as oxidation, cyclopropanation, hydrogenation, hydrosilylation, and alkane hydroxylation. This chapter summarizes recent developments, mainly from 2004 to 2014, of enantioselective iron catalysts.

Keywords

  • Alkane hydroxylation
  • Asymmetric catalysis
  • Biomimetic oxidation
  • Catalyst
  • Homogeneous catalysis
  • Hydrogenation
  • Hydrosilylation
  • Iron
  • Non-heme

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/3418_2015_102
  • Chapter length: 51 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-19396-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   349.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Scheme 1
Scheme 2
Fig. 3
Fig. 4
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Fig. 5
Scheme 10
Fig. 6
Fig. 7
Scheme 11
Fig. 8
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Fig. 9
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30
Scheme 31
Scheme 32
Scheme 33
Scheme 34
Scheme 35
Scheme 36
Scheme 37
Scheme 38
Scheme 39
Scheme 40
Scheme 41
Fig. 10
Fig. 11
Scheme 42
Scheme 43
Scheme 44
Fig. 12
Scheme 45
Scheme 46
Fig. 13
Scheme 47
Scheme 48
Scheme 49
Scheme 50
Fig. 14
Scheme 51
Scheme 52
Scheme 53
Fig. 15
Fig. 16
Scheme 54
Scheme 55
Scheme 56
Scheme 57
Scheme 58
Scheme 59
Scheme 60
Fig. 17
Scheme 61
Scheme 62
Scheme 63
Scheme 64
Scheme 65
Scheme 66
Scheme 67
Scheme 68
Scheme 69
Scheme 70
Scheme 71

Abbreviations

acac:

Acetylacetonate

Ad:

1-Adamantyl

BArF :

Tetrakis[3,5-bis(trifluoromethyl)phenyl] borate

binap:

2,2′-Bis(diphenylphosphino)-1,1′-binaphthyl

binol:

Binaphthol

bopa:

Bis(oxazolinephenyl)amine

box:

Bis(oxazoline)

DCE:

Dichloroethane

DFT:

Density functional theory

DMAP:

4-Dimethylaminopyridine

DME:

1,2-Dimethoxyethane

DMF:

N,N-Dimethylformamide

DMSO:

Dimethylsulfoxide

dpen:

(R,R)-1,2-diphenylethylenediamine

dppe:

1,2-Bis(diphenylphosphino)ethane

dppm:

1,1-Bis(diphenylphosphino)methane

DS:

Dodecyl sulfate

EPR:

Electron paramagnetic resonance

H2Pydic:

Pyridine-2,6-dicarboxylic acid

H2TAPP:

5α,10α,15α,20α-Tetrakis(o-aminophenyl)porphyrin

H2TpivPP:

5α,10α,15α,20α-Tetrakis(o-pivalamidophenyl)porphyrin

HR-MS:

High-resolution mass spectrometry

LASC:

Lewis-acid–surfactant-combined catalyst

m-CPBA:

Meta-chloroperoxybenzoic acid

NFSI:

N-fluorobenzenesulfonimide

PDP:

2-({(S)-2-[(S)-1-(pyridin-2-ylmethyl)pyrrolidin-2-yl]pyrrolidin-1-yl}methyl)pyridine

phebox:

Bis(oxazolinyl)phenyl

PMHS:

Polymethylhydrosiloxane

PP:

Porphyrin

PPN:

Bis(triphenylphosphonium)iminium

pybox:

Pyridine bis(oxazoline)

rac :

Racemate

salan:

2-[(phenylimino)methyl]phenolato

salen:

N,N′-bis(salicylidene)ethylenediamine

SIPr:

N,N-bis(2,6-diisopropylphenyl)-4,5-dihydroimidazol-2-ylidene

TBABr:

Tetra-n-butylammonium bromide

Tf:

Triflyl

TMEDA:

N,N,N′,N′-tetramethylethylenediamine

TOF:

Turnover frequency

Tol:

Tolyl

TON:

Turnover number

TPS:

t-Butyldiphenylsilyl

Ts:

Tosyl

UHP:

Urea–hydrogen peroxide adduct

References

  1. Bolm C, Legros J, Le Paih J, Zani L (2004) Chem Rev 104:6217. doi:10.1021/cr040664h

    CAS  Google Scholar 

  2. Darwish M, Wills M (2012) Catal Sci Technol 2:243. doi:10.1039/c1cy00390a

    CAS  Google Scholar 

  3. Wang C, Wan B (2012) Chin Sci Bull 57:2338. doi:10.1007/s11434-012-5141-z

    CAS  Google Scholar 

  4. Srour H, Le Maux P, Chevance S, Simonneaux G (2013) Coord Chem Rev 257:3030. doi:10.1016/j.ccr.2013.05.010

    CAS  Google Scholar 

  5. Gopalaiah K (2013) Chem Rev 113:3248. doi:10.1021/cr300236r

    CAS  Google Scholar 

  6. Morris RH (2009) Chem Soc Rev 38:2282. doi:10.1039/b806837m

    CAS  Google Scholar 

  7. Sues PE, Demmans KZ, Morris RH (2014) J Chem Soc Dalton Trans 43:7650. doi:10.1039/c4dt00612g

    CAS  Google Scholar 

  8. Enthaler S, Junge K, Beller M (2008) Angew Chem Int Ed 47:3317. doi:10.1002/anie.200800012

    CAS  Google Scholar 

  9. Collman JP, Gagne RR, Reed C, Halbert TR, Lang G, Robinson WT (1975) J Am Chem Soc 97:1427. doi:10.1021/ja00839a026

    CAS  Google Scholar 

  10. Groves JT, Myers RS (1983) J Am Chem Soc 105:5791. doi:10.1021/ja00356a016

    CAS  Google Scholar 

  11. Mansuy D, Battioni P, Renaud JP, Guerin P (1985) J Chem Soc, Chem Commun: 155–156. doi:10.1039/c39850000155

  12. Maillard P, Guerquin-Kern JL, Momenteau M (1991) Tetrahedron Lett 32:4901. doi:10.1016/S0040-4039(00)93491-9

    CAS  Google Scholar 

  13. Gross Z, Ini S (1997) J Org Chem 62:5514. doi:10.1021/JO970463W

    CAS  Google Scholar 

  14. Rose E, Soleilhavoup M, Christ-Tomasino L, Moreau G, Collman JP, Quelquejeu M, Straumanis A (1998) J Org Chem 63:2042. doi:10.1021/JO9718713

    CAS  Google Scholar 

  15. Gross Z, Galili N, Simkhovich L (1999) Tetrahedron Lett 40:1571. doi:10.1016/S0040-4039(98)02647-1

    CAS  Google Scholar 

  16. Rose E, Quelquejeu M, Pandian RP, Lecas-Nawrocka A, Vilar A, Ricart G, Collman JP, Wang Z, Straumanis A (2000) Polyhedron 19:581. doi:10.1016/S0277-5387(99)00413-1

    CAS  Google Scholar 

  17. Reginato G, Di Bari L, Salvadori P, Guilard R (2000) Eur J Org Chem 2000:1165–1171. doi:10.1002/1099-0690(200004)2000:7<1165::AID-EJOC1165>3.0.CO;2-8

    Google Scholar 

  18. Boitrel B, Baveux-Chambenoît V, Richard P (2002) Eur J Inorg Chem 2002:1666–1972. doi:10.1002/1099-0682(200207)2002:7<1666::aid-ejic1666>3.0.co;2-

    Google Scholar 

  19. Boitrel B, Baveux-Chambenoît V (2003) New J Chem 27:942. doi:10.1039/b212480g

    CAS  Google Scholar 

  20. Smith JRL, Reginato G (2003) Org Biomol Chem 1:2543

    Google Scholar 

  21. Rose E, Ren Q-z, Andrioletti B (2004) Chem Eur J 10:224. doi:10.1002/chem.200305222

    CAS  Google Scholar 

  22. Nakagawa H, Sei Y, Yamaguchi K, Nagano T, Higuchi T (2004) J Mol Catal A: Chem 219:221. doi:10.1016/j.molcata.2004.05.026

    CAS  Google Scholar 

  23. Ferrand Y, Daviaud R, Le Maux P, Simonneaux G (2006) Tetrahedron: Asymmetry 17:952. doi:10.1016/j.tetasy.2006.03.003

    CAS  Google Scholar 

  24. Rose E, Andrioletti B, Zrig S, Quelquejeu-Ethève M (2005) Chem Soc Rev 34:573. doi:10.1039/b405679p

    CAS  Google Scholar 

  25. Simonato J-P, Pecaut J, Marchon J-C, Robert Scheidt W (1999) Chem Commun: 989. doi:10.1039/a901559k

  26. Groves JT, Viski P (1990) J Org Chem 55:3628. doi:10.1021/jo00298a046

    CAS  Google Scholar 

  27. Naruta Y, Tani F, Ishihara N, Maruyama K (1991) J Am Chem Soc 113:6865. doi:10.1021/ja00018a024

    CAS  Google Scholar 

  28. Naruta Y, Tani F, Maruyama K (1990) J Chem Soc, Chem Commun 1990:1378. doi:10.1039/c39900001378

    Google Scholar 

  29. Naruta Y, Tani F, Maruyama K (1991) Tetrahedron: Asymmetry 2:533. doi:10.1016/s0957-4166(00)86106-6

    CAS  Google Scholar 

  30. Naruta Y, Tani F, Maruyama K (1992) Tetrahedron Lett 33:6323. doi:10.1016/s0040-4039(00)60964-4

    CAS  Google Scholar 

  31. Naruta Y, Ishihara N, Tani F, Maruyama K (1993) Bull Chem Soc Jpn 66:158. doi:10.1246/bcsj.66.158

    CAS  Google Scholar 

  32. Collman JP, Zhang X, Lee VJ, Brauman JI (1992) J Chem Soc, Chem Commun 1992:1647. doi:10.1039/c39920001647

    Google Scholar 

  33. Le Maux P, Simonneaux G (2011) Chem Commun 47:6957. doi:10.1039/c1cc11675d

    Google Scholar 

  34. Le Maux P, Juillard S, Simonneaux G (2006) Synthesis 2006:1701. doi:10.1055/s-2006-926451

    Google Scholar 

  35. Lai T-S, Chan F-Y, So P-K, Ma D-L, Wong K-Y, Che C-M (2006) J Chem Soc, Dalton Trans: 4845–4851. doi:10.1039/b606757c

  36. Nicolas I, Le Maux P, Simonneaux G (2008) Tetrahedron Lett 49:5793. doi:10.1016/j.tetlet.2008.07.133

    CAS  Google Scholar 

  37. Nicolas I, Roisnel T, Le Maux P, Simonneaux G (2009) Tetrahedron Lett 50:5149. doi:10.1016/j.tetlet.2009.06.131

    CAS  Google Scholar 

  38. Du G, Andrioletti B, Rose E, Woo LK (2002) Organometallics 21:4490. doi:10.1021/om0204641

    CAS  Google Scholar 

  39. Intrieri D, Le Gac S, Caselli A, Rose E, Boitrel B, Gallo E (2014) Chem Commun 50:1811. doi:10.1039/c3cc48605b

    CAS  Google Scholar 

  40. Le Maux P, Srour HF, Simonneaux G (2012) Tetrahedron 68:5824. doi:10.1016/j.tet.2012.05.014

    Google Scholar 

  41. Chen Y, Zhang XP (2007) J Org Chem 72:5931. doi:10.1021/jo070997p

    CAS  Google Scholar 

  42. Duboc-Toia C, Ménage S, Ho RYN, Que L Jr, Lambeaux C, Fontecave M (1999) Inorg Chem 38:1261. doi:10.1021/ic980958j

    CAS  Google Scholar 

  43. Duboc-Toia C, Ménage S, Lambeaux C, Fontecave M (1997) Tetrahedron Lett 38:3727. doi:10.1016/s0040-4039(97)00710-7

    CAS  Google Scholar 

  44. Mekmouche Y, Hummel H, Ho Raymond YN, Que L Jr, Schünemann V, Thomas F, Trautwein Alfred X, Lebrun C, Gorgy K, Leprêtre J-C, Collomb M-N, Deronzier A, Fontecave M, Ménage S (2002) Chem Eur J 8:1196

    CAS  Google Scholar 

  45. Marchi-Delapierre C, Jorge-Robin A, Thibon A, Ménage S (2007) Chem Commun: 1166

    Google Scholar 

  46. Nishikawa Y, Yamamoto H (2011) J Am Chem Soc 133:8432. doi:10.1021/ja201873d

    CAS  Google Scholar 

  47. Yeung H-L, Sham K-C, Tsang C-S, Lau T-C, Kwong H-L (2008) Chem Commun: 3801. doi:10.1039/b804281k

  48. Yeung C-T, Sham K-C, Lee W-S, Wong W-T, Wong W-Y, Kwong H-L (2009) Inorg Chim Acta 362:3267. doi:10.1016/j.ica.2009.02.034

    CAS  Google Scholar 

  49. Ollevier T, Plancq B (2012) Chem Commun 48:2289. doi:10.1039/c1cc16409k

    CAS  Google Scholar 

  50. Kitanosono T, Ollevier T, Kobayashi S (2013) Chem Asian J 8:3051. doi:10.1002/asia.201301149

    CAS  Google Scholar 

  51. Lafantaisie M, Mirabaud A, Plancq B, Ollevier T (2014) ChemCatChem 6:2244. doi:10.1002/cctc.201402029

    CAS  Google Scholar 

  52. Plancq B, Ollevier T (2012) Chem Commun 48:3806. doi:10.1039/c2cc18032d

    CAS  Google Scholar 

  53. Plancq B, Lafantaisie M, Companys S, Maroun C, Ollevier T (2013) Org Biomol Chem 11:7463. doi:10.1039/c3ob41782d

    CAS  Google Scholar 

  54. Plancq B, Ollevier T (2012) Aust J Chem 65:1564. doi:10.1071/ch12354

    CAS  Google Scholar 

  55. Legros J, Bolm C (2003) Angew Chem Int Ed 42:5487. doi:10.1002/anie.200352635

    CAS  Google Scholar 

  56. Legros J, Bolm C (2004) Angew Chem Int Ed 43:4225. doi:10.1002/anie.200460236

    CAS  Google Scholar 

  57. Korte A, Legros J, Bolm C (2004) Synlett 2004:2397. doi:10.1055/s-2004-832834

    Google Scholar 

  58. Legros J, Bolm C (2005) Chem Eur J 11:1086. doi:10.1002/chem.200400857

    CAS  Google Scholar 

  59. Muthupandi P, Sekar G (2012) Org Biomol Chem 10:5347. doi:10.1039/c2ob25810b

    CAS  Google Scholar 

  60. Boobalan R, Chen C (2013) Adv Synth Catal 355:3443. doi:10.1002/adsc.201300653

    CAS  Google Scholar 

  61. Stingl KA, Weiss KM, Tsogoeva SB (2012) Tetrahedron 68:8493. doi:10.1016/j.tet.2012.07.052

    CAS  Google Scholar 

  62. Bryliakov KP, Talsi EP (2004) Angew Chem Int Ed 43:5228. doi:10.1002/anie.200460108

    CAS  Google Scholar 

  63. Bryliakov KP, Talsi EP (2007) Chem Eur J 13:8045. doi:10.1002/chem.200700566

    CAS  Google Scholar 

  64. Mukherjee C, Stammler A, Boegge H, Glaser T (2010) Chem Eur J 16:10137. doi:10.1002/chem.201000923

    CAS  Google Scholar 

  65. White JD, Shaw S (2011) Org Lett 13:2488. doi:10.1021/ol2007378

    CAS  Google Scholar 

  66. White JD, Shaw S (2014) Chem Sci 5:2200. doi:10.1039/c4sc00051j

    CAS  Google Scholar 

  67. Shaw S, White JD (2014) J Am Chem Soc 136:13578. doi:10.1021/ja507853f

    CAS  Google Scholar 

  68. Liao S, List B (2012) Adv Synth Catal 354:2363. doi:10.1002/adsc.201200251

    CAS  Google Scholar 

  69. Egami H, Katsuki T (2007) J Am Chem Soc 129:8940. doi:10.1021/ja071916+

    CAS  Google Scholar 

  70. Egami H, Katsuki T (2008) Synlett 2008:1543. doi:10.1055/s-2008-1078427

    Google Scholar 

  71. Li B, Bai S, Wang P, Yang H, Yang Q, Li C (2011) PCCP 13:2504. doi:10.1039/c0cp01828g

    CAS  Google Scholar 

  72. Egami H, Katsuki T (2009) J Am Chem Soc 131:6082. doi:10.1021/ja901391u

    CAS  Google Scholar 

  73. Egami H, Matsumoto K, Oguma T, Kunisu T, Katsuki T (2010) J Am Chem Soc 132:13633. doi:10.1021/ja105442m

    CAS  Google Scholar 

  74. Kunisu T, Oguma T, Katsuki T (2011) J Am Chem Soc 133:12937. doi:10.1021/ja204426s

    CAS  Google Scholar 

  75. Uchida T, Katsuki T (2013) J Synth Org Chem Jpn 71:1126. doi:10.5059/yukigoseikyokaishi.71.1126

    CAS  Google Scholar 

  76. Oguma T, Katsuki T (2012) J Am Chem Soc 134:20017. doi:10.1021/ja310203c

    CAS  Google Scholar 

  77. Oguma T, Katsuki T (2014) Chem Commun 50:5053. doi:10.1039/c4cc01555j

    CAS  Google Scholar 

  78. Gu X, Zhang Y, Xu Z-J, Che C-M (2014) Chem Commun 50:7870. doi:10.1039/c4cc01631a

    CAS  Google Scholar 

  79. Corey EJ, Imai N, Zhang HY (1991) J Am Chem Soc 113:728. doi:10.1021/ja00002a081

    CAS  Google Scholar 

  80. Corey EJ, Ishihara K (1992) Tetrahedron Lett 33:6807. doi:10.1016/S0040-4039(00)61781-1

    CAS  Google Scholar 

  81. Kanemasa S, Oderaotoshi Y, Yamamoto H, Tanaka J, Wada E, Curran DP (1997) J Org Chem 62:6454. doi:10.1021/JO970906W

    CAS  Google Scholar 

  82. Sibi MP, Manyem S, Palencia H (2006) J Am Chem Soc 128:13660. doi:10.1021/ja064472a

    CAS  Google Scholar 

  83. Takacs JM, Boito SC (1995) Tetrahedron Lett 36:2941. doi:10.1016/0040-4039(95)00443-g

    CAS  Google Scholar 

  84. Guillemot G, Neuburger M, Pfaltz A (2007) Chem Eur J 13:8960. doi:10.1002/chem.200700826

    CAS  Google Scholar 

  85. Zhu S-F, Cai Y, Mao H-X, Xie J-H, Zhou Q-L (2010) Nat Chem 2:546. doi:10.1038/nchem.651

    CAS  Google Scholar 

  86. Cai Y, Zhu S-F, Wang G-P, Zhou Q-L (2011) Adv Synth Catal 353:2939. doi:10.1002/adsc.201100334

    CAS  Google Scholar 

  87. Shen J-J, Zhu S-F, Cai Y, Xu H, Xie X-L, Zhou Q-L (2014) Angew Chem Int Ed 53:13188. doi:10.1002/anie.201406853

    CAS  Google Scholar 

  88. Niwa T, Nakada M (2012) J Am Chem Soc 134:13538. doi:10.1021/ja304219s

    CAS  Google Scholar 

  89. Williamson KS, Yoon TP (2012) J Am Chem Soc 134:12370. doi:10.1021/ja3046684

    CAS  Google Scholar 

  90. Deng Q-H, Bleith T, Wadepohl H, Gade LH (2013) J Am Chem Soc 135:5356. doi:10.1021/ja402082p

    CAS  Google Scholar 

  91. Liu G-S, Zhang Y-Q, Yuan Y-A, Xu H (2013) J Am Chem Soc 135:3343. doi:10.1021/ja311923z

    CAS  Google Scholar 

  92. Zhang Y-Q, Yuan Y-A, Liu G-S, Xu H (2013) Org Lett 15:3910. doi:10.1021/ol401666e

    CAS  Google Scholar 

  93. Lu D-F, Liu G-S, Zhu C-L, Yuan B, Xu H (2014) Org Lett 16:2912. doi:10.1021/ol501051p

    CAS  Google Scholar 

  94. Usuda H, Kuramochi A, Kanai M, Shibasaki M (2004) Org Lett 6:4387. doi:10.1021/ol048018s

    CAS  Google Scholar 

  95. Shimizu Y, Shi S-L, Usuda H, Kanai M, Shibasaki M (2010) Angew Chem Int Ed 49:1103. doi:10.1002/anie.200906678

    CAS  Google Scholar 

  96. Jankowska J, Paradowska J, Mlynarski J (2006) Tetrahedron Lett 47:5281. doi:10.1016/j.tetlet.2006.05.140

    CAS  Google Scholar 

  97. Jankowska J, Paradowska J, Rakiel B, Mlynarski J (2007) J Org Chem 72:2228. doi:10.1021/jo0621470

    CAS  Google Scholar 

  98. Nishiyama H, Furuta A (2007) Chem Commun: 760. doi:10.1039/b617388h

  99. Inagaki T, Le Phong T, Furuta A, Ito J-i, Nishiyama H (2010) Chem Eur J 16:3090

    CAS  Google Scholar 

  100. Inagaki T, Ito A, Ito J-i, Nishiyama H (2010) Angew Chem Int Ed 49:9384. doi:10.1002/anie.201005363

    CAS  Google Scholar 

  101. Hosokawa S, Ito J-I, Nishiyama H (2010) Organometallics 29:5773. doi:10.1021/om1009186

    CAS  Google Scholar 

  102. Kawatsura M, Komatsu Y, Yamamoto M, Hayase S, Itoh T (2007) Tetrahedron Lett 48:6480. doi:10.1016/j.tetlet.2007.07.053

    CAS  Google Scholar 

  103. Kawatsura M, Komatsu Y, Yamamoto M, Hayase S, Itoh T (2008) Tetrahedron 64:3488. doi:10.1016/j.tet.2008.01.121

    CAS  Google Scholar 

  104. Tondreau AM, Darmon JM, Wile BM, Floyd SK, Lobkovsky E, Chirik PJ (2009) Organometallics 28:3928. doi:10.1021/om900224e

    CAS  Google Scholar 

  105. Redlich M, Hossain MM (2004) Tetrahedron Lett 45:8987. doi:10.1016/j.tetlet.2004.10.047

    CAS  Google Scholar 

  106. Nakanishi M, Salit A-F, Bolm C (2008) Adv Synth Catal 350:1835. doi:10.1002/adsc.200700519

    CAS  Google Scholar 

  107. Kawatsura M, Kajita K, Hayase S, Itoh T (2010) Synlett 2010:1243. doi:10.1055/s-0029-1219782

    Google Scholar 

  108. Wang J, Frings M, Bolm C (2013) Angew Chem Int Ed 52:8661. doi:10.1002/anie.201304451

    CAS  Google Scholar 

  109. Wang J, Frings M, Bolm C (2014) Chem Eur J 20:966. doi:10.1002/chem.201303850

    CAS  Google Scholar 

  110. Gelalcha FG, Bitterlich B, Anilkumar G, Tse MK, Beller M (2007) Angew Chem Int Ed 46:7293. doi:10.1002/anie.200701235

    CAS  Google Scholar 

  111. Gelalcha FG, Anilkumar G, Tse MK, Bruckner A, Beller M (2008) Chem Eur J 14:7687. doi:10.1002/chem.200800595

    CAS  Google Scholar 

  112. Yazerski VA, Orue A, Evers T, Kleijn H, Klein Gebbink RJM (2013) Catal Sci Technol 3:2810. doi:10.1039/c3cy00484h

    CAS  Google Scholar 

  113. Yang H-M, Gao Y-H, Li L, Jiang Z-Y, Lai G-Q, Xia C-G, Xu L-W (2010) Tetrahedron Lett 51:3836. doi:10.1016/j.tetlet.2010.05.074

    CAS  Google Scholar 

  114. Chen MS, White MC (2007) Science 318:783. doi:10.1126/science.1148597

    CAS  Google Scholar 

  115. Suzuki K, Oldenburg PD, Que L Jr (2008) Angew Chem Int Ed 47:1887. doi:10.1002/anie.200705061

    CAS  Google Scholar 

  116. Costas M, Tipton AK, Chen K, Jo DH, Que L Jr (2001) J Am Chem Soc 123:6722

    CAS  Google Scholar 

  117. Wu M, Miao C-X, Wang S, Hu X, Xia C, Kuehn FE, Sun W (2011) Adv Synth Catal 353:3014. doi:10.1002/adsc.201100267

    CAS  Google Scholar 

  118. Wang X, Miao C, Wang S, Xia C, Sun W (2013) ChemCatChem 5:2489. doi:10.1002/cctc.201300102

    CAS  Google Scholar 

  119. Lyakin OY, Ottenbacher RV, Bryliakov KP, Talsi EP (2012) ACS Catal 2:1196. doi:10.1021/cs300205n

    CAS  Google Scholar 

  120. Lyakin OY, Ottenbacher RV, Bryliakov KP, Talsi EP (2013) Top Catal 56:939. doi:10.1007/s11244-013-0058-6

    CAS  Google Scholar 

  121. Gosiewska S, Lutz M, Spek AL, Klein Gebbink RJM (2007) Inorg Chim Acta 360:405. doi:10.1016/j.ica.2006.08.009

    CAS  Google Scholar 

  122. Langlotz BK, Wadepohl H, Gade LH (2008) Angew Chem Int Ed 47:4670. doi:10.1002/anie.200801150

    CAS  Google Scholar 

  123. Flueckiger M, Togni A (2011) Eur J Org Chem 2011:4353. doi:10.1002/ejoc.201100550

    CAS  Google Scholar 

  124. Wang B, Wang S, Xia C, Sun W (2012) Chem Eur J 18:7332. doi:10.1002/chem.201200992

    CAS  Google Scholar 

  125. Kuendig EP, Bourdin B, Bernardinelli G (1994) Angew Chem 106:1931

    CAS  Google Scholar 

  126. Bruin ME, Kündig PE (1998) Chem Commun: 2635. doi:10.1039/a806445h

  127. Kündig EP, Saudan CM, Viton F (2001) Adv Synth Catal 343:51. doi:10.1002/1615-4169(20010129)343:1<51::aid-adsc51>3.0.co;2-n

    Google Scholar 

  128. Viton F, Bernardinelli G, Kuendig EP (2002) J Am Chem Soc 124:4968. doi:10.1021/ja017814f

    CAS  Google Scholar 

  129. Matsukawa S, Sugama H, Imamoto T (2000) Tetrahedron Lett 41:6461. doi:10.1016/s0040-4039(00)01030-3

    CAS  Google Scholar 

  130. Chen J-S, Chen L-L, Xing Y, Chen G, Shen W-Y, Dong Z-R, Li Y-Y, Gao J-X (2004) Acta Chim Sinica 62:1745

    CAS  Google Scholar 

  131. Yu S, Shen W, Li Y, Dong Z, Xu Y, Li Q, Zhang J, Gao J (2012) Adv Synth Catal 354:818. doi:10.1002/adsc.201100733

    CAS  Google Scholar 

  132. Li Y, Yu S, Wu X, Xiao J, Shen W, Dong Z, Gao J (2014) J Am Chem Soc 136:4031. doi:10.1021/ja5003636

    CAS  Google Scholar 

  133. Shaikh NS, Enthaler S, Junge K, Beller M (2008) Angew Chem Int Ed 47:2497. doi:10.1002/anie.200705624

    CAS  Google Scholar 

  134. Addis D, Shaikh N, Zhou S, Das S, Junge K, Beller M (2010) Chem Asian J 5:1687. doi:10.1002/asia.201000064

    CAS  Google Scholar 

  135. Zhou S, Fleischer S, Junge K, Das S, Addis D, Beller M (2010) Angew Chem Int Ed 49:8121. doi:10.1002/anie.201002456

    CAS  Google Scholar 

  136. Sui-Seng C, Freutel F, Lough AJ, Morris RH (2008) Angew Chem Int Ed 47:940. doi:10.1002/anie.200705115

    CAS  Google Scholar 

  137. Mikhailine A, Lough AJ, Morris RH (2009) J Am Chem Soc 131:1394. doi:10.1021/ja809493h

    CAS  Google Scholar 

  138. Lagaditis PO, Lough AJ, Morris RH (2010) Inorg Chem 49:10057. doi:10.1021/ic101366z

    CAS  Google Scholar 

  139. Meyer N, Lough AJ, Morris RH (2009) Chem Eur J 15:5605. doi:10.1002/chem.200802458

    CAS  Google Scholar 

  140. Sonnenberg JF, Coombs N, Dube PA, Morris RH (2012) J Am Chem Soc 134:5893. doi:10.1021/ja211658t

    CAS  Google Scholar 

  141. Mikhailine AA, Maishan MI, Lough AJ, Morris RH (2012) J Am Chem Soc 134:12266. doi:10.1021/ja304814s

    CAS  Google Scholar 

  142. Mikhailine AA, Maishan MI, Morris RH (2012) Org Lett 14:4638. doi:10.1021/ol302079q

    CAS  Google Scholar 

  143. Sues PE, Lough AJ, Morris RH (2011) Organometallics 30:4418. doi:10.1021/om2005172

    CAS  Google Scholar 

  144. Zuo W, Lough AJ, Li YF, Morris RH (2013) Science 342:1080. doi:10.1126/science.1244466

    CAS  Google Scholar 

  145. Lagaditis PO, Lough AJ, Morris RH (2011) J Am Chem Soc 133:9662. doi:10.1021/ja202375y

    CAS  Google Scholar 

  146. Lagaditis PO, Sues PE, Sonnenberg JF, Wan KY, Lough AJ, Morris RH (2014) J Am Chem Soc 136:1367. doi:10.1021/ja4082233

    CAS  Google Scholar 

  147. Zuo W, Tauer S, Prokopchuk DE, Morris RH (2014) Organometallics 33:5791. doi:10.1021/om500479q

    CAS  Google Scholar 

  148. Bigler R, Mezzetti A (2014) Org Lett 16:6460. doi:10.1021/ol503295c

    CAS  Google Scholar 

  149. Hoyt JM, Shevlin M, Margulieux GW, Krska SW, Tudge MT, Chirik PJ (2014) Organometallics 33:5781. doi:10.1021/om500329q

    CAS  Google Scholar 

  150. Yamashita Y, Ueno M, Kuriyama Y, Kobayashi S (2002) Adv Synth Catal 344:929. doi:10.1002/1615-4169(200210)344:9<929::aid-adsc929>3.0.co;2-z

    CAS  Google Scholar 

  151. Nagataki T, Tachi Y, Itoh S (2005) J Mol Catal A: Chem 225:103. doi:10.1016/j.molcata.2004.08.032

    CAS  Google Scholar 

  152. Muthupandi P, Alamsetti Santosh K, Sekar G (2009) Chem Commun: 3288.

    Google Scholar 

  153. Yang L, Zhu Q, Guo S, Qian B, Xia C, Huang H (2010) Chem Eur J 16:1638. doi:10.1002/chem.200902705

    CAS  Google Scholar 

  154. Nakamura M, Hirai A, Nakamura E (2000) J Am Chem Soc 122:978. doi:10.1021/ja983066r

    CAS  Google Scholar 

  155. Nakamura E, Yoshikai N (2010) J Org Chem 75:6061. doi:10.1021/jo100693m

    CAS  Google Scholar 

  156. Berkessel A, Reichau S, von der Hoeh A, Leconte N, Neudorfl J-M (2011) Organometallics 30:3880. doi:10.1021/om200459s

    CAS  Google Scholar 

  157. Zhou S, Fleischer S, Junge K, Beller M (2011) Angew Chem Int Ed 50:5120. doi:10.1002/anie.201100878

    CAS  Google Scholar 

  158. Suginome M, Fu GC (2000) Chirality 12:318. doi:10.1002/(sici)1520-636x(2000)12:5/6<318::aid-chir4>3.0.co;2-9

    CAS  Google Scholar 

  159. Wurz RP, Lee EC, Ruble JC, Fu GC (2007) Adv Synth Catal 349:2345. doi:10.1002/adsc.200700219

    CAS  Google Scholar 

  160. Dosa PI, Ruble JC, Fu GC (1997) J Org Chem 62:444. doi:10.1021/jo962156g

    CAS  Google Scholar 

  161. Ruble JC, Fu GC (1996) J Org Chem 61:7230. doi:10.1021/JO961433G

    CAS  Google Scholar 

  162. Garrett CE, Fu GC (1998) J Am Chem Soc 120:7479. doi:10.1021/ja981061o

    CAS  Google Scholar 

  163. Hills ID, Fu GC (2003) Angew Chem Int Ed 42:3921. doi:10.1002/anie.200351666

    CAS  Google Scholar 

  164. Liang J, Ruble JC, Fu GC (1998) J Org Chem 63:3154. doi:10.1021/JO9803380

    CAS  Google Scholar 

  165. Lee EC, McCauley KM, Fu GC (2007) Angew Chem Int Ed 46:977. doi:10.1002/anie.200604312

    CAS  Google Scholar 

  166. Schaefer C, Fu GC (2005) Angew Chem Int Ed 44:4606. doi:10.1002/anie.200501434

    CAS  Google Scholar 

  167. Lee EC, Hodous BL, Bergin E, Shih C, Fu GC (2005) J Am Chem Soc 127:11586. doi:10.1021/ja052058p

    CAS  Google Scholar 

  168. Hu B, Meng M, Wang Z, Du W-T, Fossey JS, Hu X-Q, Deng W-P (2010) J Am Chem Soc 132:17041. doi:10.1021/ja108238a

    CAS  Google Scholar 

  169. Khiar N, Fernandez I, Alcudia F (1993) Tetrahedron Lett 34:123. doi:10.1016/s0040-4039(00)60073-4

    CAS  Google Scholar 

  170. Gilani M, Wilhelm R (2008) Tetrahedron: Asymmetry 19:2346. doi:10.1016/j.tetasy.2008.10.011

    CAS  Google Scholar 

  171. Cai Y, Liu X, Zhou P, Kuang Y, Lin L, Feng X (2013) Chem Commun 49:8054. doi:10.1039/c3cc44421j

    CAS  Google Scholar 

  172. Naik A, Maji T, Reiser O (2010) Chem Commun 46:9265. doi:10.1039/c0cc00508h

    CAS  Google Scholar 

  173. Wu H, Wang B, Liu H, Wang L (2011) Tetrahedron 67:1210. doi:10.1016/j.tet.2010.11.091

    CAS  Google Scholar 

  174. Karthikeyan P, Muskawar PN, Aswar SA, Sythana SK, Bhagat PR (2013) J Mol Catal A: Chem 379:333. doi:10.1016/j.molcata.2013.08.029

    CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the Natural Sciences and Engineering Research Council of Canada (NSERC) and to the Centre in Green Chemistry and Catalysis (CGCC) for the financial support. We thank Martin Pichette Drapeau and Angela Jalba for their valuable help in proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Ollevier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ollevier, T., Keipour, H. (2015). Enantioselective Iron Catalysts. In: Bauer, E. (eds) Iron Catalysis II. Topics in Organometallic Chemistry, vol 50. Springer, Cham. https://doi.org/10.1007/3418_2015_102

Download citation