Skip to main content

Organometallic Ruthenium Nanoparticles and Catalysis

  • Chapter
  • First Online:
Ruthenium in Catalysis

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 48))

Abstract

Due to a high number of possible applications in various domains, metal nanoparticles are nowadays the subject of an extensive development. This interest in metal nanoparticles is related to their electronic properties at the frontier between those of molecular species and bulk compounds which are induced by their nanometric size. Regarding the field of catalysis, the growing attention for metal nanoparticles also results from the high proportion of surface atoms present in the upper layer of the metallic core which gives rise to numerous potential active sites. Thus, nanocatalysis (which involves the use of catalysts with at least one dimension at the nanoscale) has emerged in the field of modern catalysis as a domain on the borderline between homogeneous and heterogeneous catalysis. Present developments aim at multifunctionality which can be achieved by the proper design of complex nanostructures also named nanohybrids. In nanohybrid the term “hybrid” refers to the appropriate association between a metal core and a stabilizing shell such as a polymer, a ligand, an ionic liquid, or even a support (inorganic materials, carbon black, carbon nanotubes, etc.…). This association can be considered as crucial to tune the surface properties of nanostructures and consequently their catalytic performance. The main expectation for the scientific community is that precisely designed nanoparticles (in terms of size, shape, and composition including surface ligands) should offer the benefits of both homogeneous and heterogeneous catalysts, namely high efficiency and better selectivity.

In that context, we have been developing an efficient and versatile synthesis method using common tools from organometallic chemistry to produce well-controlled nanostructures which have been proved to be of interest for application in catalysis. A high number of studies have been focused on ruthenium nanosystems due to the use of a very convenient organometallic precursor, namely [Ru(COD)(COT)], as the metal source. This Ru complex is easily decomposed under dihydrogen atmosphere at room temperature. In addition, it is a complex of choice to prepare “naked” ruthenium nanostructures since the olefinic ligands present in the coordination sphere of ruthenium are hydrogenated into alkanes which exhibit no interaction with the metal surface. As a consequence, the metallic surface of the obtained nanoparticles is only covered by hydrides and the stabilizer which was deliberately added. This is highly convenient for studying the influence of the stabilizer on the morphology of the nanoparticles as well as their surface chemistry and related catalytic performance.

This chapter gives an overview of our experience in the preparation of ruthenium nanoparticles of controlled size and surface state. Insights are given on the study of their surface chemistry by using simple techniques, mainly IR and NMR, both in solution and in solid state, as well as model hydrogenation reactions. We also discuss the performances of the Ru nanoparticles in catalysis which have been investigated both in solution (in organic or aqueous phases) and after their deposition on a support (alumina, silica, or carbon supports).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schmid G (ed) (1994) Clusters and colloids. From theory to applications. Wiley, Weinheim

    Google Scholar 

  2. Schmid G (ed) (2004) Nanoparticles. From theory to application. Wiley, Weinheim

    Google Scholar 

  3. Zhou B, Han S, Raja R, Somorjai G (eds) (2003) Nanotechnology in catalysis. Kluwer Academic/Plenum Publisher, New York

    Google Scholar 

  4. Ulrich H, Uzi L (eds) (2007) Nanocatalysis. Series Nanoscience and Technology. Springer Berlin and Heidelberg

    Google Scholar 

  5. Roucoux A, Philippot K (2007) In: de Vries JG, Elsevier CJ (eds) Handbook of homogeneous hydrogenations, vol 9. Wiley, Weinheim, pp 217–255

    Google Scholar 

  6. Astruc D (ed) (2008) Nanoparticles and catalysis. Wiley-Interscience, New York

    Google Scholar 

  7. Somorjai GA, Frei H, Park JY (2009) J Am Chem Soc 131:16589–16605

    CAS  Google Scholar 

  8. Somorjai GA, Aliaga C (2010) Langmuir 26:16190–16203

    CAS  Google Scholar 

  9. Somorjai GA, Park JY (2009) Surf Sci 603:1293–1300

    CAS  Google Scholar 

  10. Somorjai GA, Li Y (2010) Top Catal 53:311–325

    CAS  Google Scholar 

  11. Zhang Y, Grass ME, Kuhn JN, Tao F, Habas SE, Huang W, Yang P, Somorjai GA (2008) J Am Chem Soc 130:5868–5869

    CAS  Google Scholar 

  12. Cushing BL, Kolescnichenko VL, O’Connor CJ (2004) Chem Rev 104:3893–3946

    CAS  Google Scholar 

  13. Tao AR, Habas S, Yang P (2008) Small 4:310–325

    CAS  Google Scholar 

  14. Pradhan SM, Pal T (2010) J Colloid Interface Sci 341(2):333

    Google Scholar 

  15. Mourdikoudis S, Liz-Marzán LM (2013) Chem Mater 25:1465

    CAS  Google Scholar 

  16. Guyonnet Bilé E, Cortelazzo-Polisini E, Denicourt-Nowicki A, Sassine R, Launay F, Roucoux A (2012) ChemSusChem 5:91

    Google Scholar 

  17. Grubbs RB (2007) Polym Rev 47(2):2015

    Google Scholar 

  18. Yan N, Zhang J, Yuan Y, Chen G-T, Dyson PJ, Li Z, Kou Y (2010) Chem Commun 46:1631

    CAS  Google Scholar 

  19. Myers VS, Weir MG, Carino EV, Yancey DF, Pande S, Crooks RM (2011) Chem Sci 2:1632

    CAS  Google Scholar 

  20. Astruc D (2003) CR Chimie 6:709

    CAS  Google Scholar 

  21. Astruc D, Diallo AK, Ornelas C (2013) In: Serp P, Philippot K (eds) Nanomaterials and catalysis. Wiley, Weinheim, Chap 3, p 101

    Google Scholar 

  22. Dupont J, Scholten JD (2010) Chem Soc Rev 39:1780

    CAS  Google Scholar 

  23. Scholten JD, Prechtl MG, Dupont J (2012) Handbook of green chemistry, vol 8. Wiley, Weinheim, p 1

    Google Scholar 

  24. Nag A, Kovalenko MV, Lee J-S, Liu W, Spokoyny B, Talapin DV (2011) J Am Chem Soc 133:10612–10620

    CAS  Google Scholar 

  25. Philippot K, Chaudret B (2003) CR Chim 6:1019–1034

    CAS  Google Scholar 

  26. Baumer M, Libuda J, Neyman KM, Rosch N, Rupprechterz G, Freund H-J (2007) Phys Chem Chem Phys 9:3541–3558

    Google Scholar 

  27. Corma A, García H (2008) Chem Soc Rev 37:2096–2126

    CAS  Google Scholar 

  28. Risse T, Shaikhutdinov S, Nilius N, Sterrer M, Freund H-J (2008) Acc Chem Res 41:949–956

    CAS  Google Scholar 

  29. Freund H-J (2010) Chem Eur J 16:9384–9397

    CAS  Google Scholar 

  30. Nilius N, Risse T, Schauermann S, Shaikhutdinov S, Sterrer M, Freund H-J (2011) Top Catal 54:4–12

    CAS  Google Scholar 

  31. Primo A, Corma A, García H (2011) Phys Chem Chem Phys 13:886–910

    CAS  Google Scholar 

  32. Serna P, Boronat M, Corma A (2011) Top Catal 54:439–446

    CAS  Google Scholar 

  33. Boronat M, Corma A (2011) J Catal 284:138–147

    CAS  Google Scholar 

  34. López C, Corma A (2012) ChemCatChem 4:751–752

    Google Scholar 

  35. Chaudret B, Commenges G, Poilblanc R (1982) J Chem Soc Chem Commun 1388–1390

    Google Scholar 

  36. Cormary B, Dumestre F, Liakakos N, Soulantica K, Chaudret B (2013) Dalton Trans 42:12546–12553

    CAS  Google Scholar 

  37. Amiens C, Chaudret B, Ciuculescu-Pradines D, Colliére V, Fajerwerg K, Fau P, Kahn M, Maisonnat A, Soulantica K, Philippot K (2013) New J Chem 37:3374–3401

    CAS  Google Scholar 

  38. Gregson D, Howard JAK, Murray M, Spencer JL (1981) J Chem Soc Chem Commun 716

    Google Scholar 

  39. Frost PW, Howard JAK, Spencer JL, Turner DG (1981) J Chem Soc Chem Commun 1104

    Google Scholar 

  40. Chaudret B, Cole-Hamilton DJ, Wilkinson G (1978) J Chem Soc Dalton Trans 1739

    Google Scholar 

  41. Philippot K, Chaudret B (2003) C R Acad Sci 6:1019

    CAS  Google Scholar 

  42. Vranka RG, Dahl LF, Chini P, Chatt J (1969) J Am Chem Soc 91:1574–1576

    CAS  Google Scholar 

  43. Fumagalli A, Martinengo S, Chini P, Albinati A, Bruckner S, Heaton BT (1978) J Chem Soc Chem Comm 195–196

    Google Scholar 

  44. Washecheck DM, Wucherer EJ, Dahl Lawrence F, Ceriotti A, Longoni G, Manassero Mario M, Sansoni M, Chini P (1979) J Am Chem Soc 101:6110–6112

    CAS  Google Scholar 

  45. Scott SL, Susannah, Basset JM (1994) J Mol Catal 86:5–22

    Google Scholar 

  46. Schmid G, Boese R, Pfeil R, Bandermann F, Meyer S, Calis GHM, van der Velden JWA (1981) Chem Ber 114:3634

    CAS  Google Scholar 

  47. Wallenberg LR, Bovin JO, Schmid G (1985) Surf Sci 156:256–264

    CAS  Google Scholar 

  48. Van Staveren MPJ, Brom HB, De Jongh LJ, Schmid G (1986) Solid State Comm 60:319–322

    Google Scholar 

  49. Benfield RE, Creighton JA, Eadon DG, Schmid G (1989) Zeitschrift fuer Physik D Atoms Mol Clusters 12:533–536

    CAS  Google Scholar 

  50. Schmid G (1990) Inorg Synth 7:214–218

    Google Scholar 

  51. Bradley JS, Hill EH, Leonowicz ME, Wirzke H (1987) J Mol Catal 41:59–74

    CAS  Google Scholar 

  52. Philippot K, Chaudret B (2007) Comprehensive organometallic chemistry III. In: Crabtree RH, Mingos MP (Eds-in-Chief) Volume 12 – Applications III: functional materials, environmental and biological applications, Dermot O’Hare (Volume Ed.), Chapter 12–03, Elsevier, Oxford, pp 71–99

    Google Scholar 

  53. Mehdaoui B, Carrey J, Stadler M, Cornejo A, Nayral C, Delpech F, Chaudret B, Respaud M (2012) App Phys Lett 100:052403/1

    CAS  Google Scholar 

  54. Barriere C, Piettre K, Latour V, Margeat O, Turrin C-O, Chaudret B, Fau P (2012) J Mater Chem 22:2279

    CAS  Google Scholar 

  55. Meffre A, Lachaize S, Gatel C, Respaud M, Chaudret B (2011) J Mater Chem 21:13464

    CAS  Google Scholar 

  56. Dumestre F, Chaudret B, Amiens C, Fromen M-C, Casanove M-J, Renaud P, Zurcher P (2002) Angew Chem Int Ed 41(22):4286

    CAS  Google Scholar 

  57. Wetz F, Soulantica K, Respaud M, Falqui A, Chaudret B (2007) Mater Sci Eng C 27:1162

    CAS  Google Scholar 

  58. Schmid G (2010) In: In: Schmid G (ed) Nanoparticles from theory to applications. Second completely revised and updated edition. Wiley, Weinheim, p 217

    Google Scholar 

  59. Bradley JS, Millar JM, Hill EW, Behal S, Chaudret B, Duteil A (1991) Faraday Discuss 92:255–268

    CAS  Google Scholar 

  60. Duteil A, Quéau R, Chaudret B, Mazel R, Roucau C, Bradley JS (1993) Chem Mater 5:341–347

    CAS  Google Scholar 

  61. Pan C, Pelzer K, Philippot K, Chaudret B, Dassenoy F, Lecante P, Casanove M-J (2001) J Am Chem Soc 123:7584–7593

    CAS  Google Scholar 

  62. Novio F, Philippot K, Chaudret B (2010) Catal Lett 140:1–7

    CAS  Google Scholar 

  63. Pieters G, Taglang C, Bonnefille E, Gutmann T, Puente C, Berthet J-C, Dugave C, Chaudret B, Rousseau B (2014) Angew Chem Int Ed 53:230–234

    CAS  Google Scholar 

  64. Vidoni O, Philippot K, Amiens C, Chaudret B, Balmes O, Malm J-O, Bovin J-O, Senocq F, Casanove M-J (1999) Angew Chem Int Ed 38:3736–3738

    CAS  Google Scholar 

  65. Pelzer K, Vidoni O, Philippot K, Chaudret B, Collière V (2003) Adv Funct Mater 13:118–126

    CAS  Google Scholar 

  66. Pelzer K, Philippot K, Chaudret B (2003) Z Phys Chem 217:1–9

    Google Scholar 

  67. Lara P, Philippot K, Chaudret B (2013) ChemCatChem 5:28–45

    CAS  Google Scholar 

  68. Sun S, Fullerton EE, Weller D, Murray CB (2001) IEEE Trans Magn 37:1239–1243

    CAS  Google Scholar 

  69. Metin O, Mazumder V, Ozkar S, Sun S (2010) J Am Chem Soc 132:1468–1469

    CAS  Google Scholar 

  70. Liu Y, Wang C, Wei Y, Zhu L, Li D, Jiang JS, Markovic NM, Stamenkovic VR, Sun S (2011) Nano Lett 11:1614–1617

    CAS  Google Scholar 

  71. Watt J, Yu C, Chang SLY, Cheong S, Tilley RD (2013) J Am Chem Soc 135:606–609

    CAS  Google Scholar 

  72. Lignier P, Bellabarba R, Tooze RP, Su Z, Landon P, Ménard H, Zhou W (2012) Cryst Growth Des 12:939–942

    CAS  Google Scholar 

  73. Ramirez E, Jansat S, Philippot K, Lecante P, Gomez M, Masdeu-Bulto AM, Chaudret B (2004) J Organomet Chem 689:4601–4610

    CAS  Google Scholar 

  74. García-Antón J, Axet MR, Jansat S, Philippot K, Chaudret B, Pery T, Buntkowsky G, Limbach HH (2008) Angew Chem Int Ed 47:2074–2078

    Google Scholar 

  75. Novio F, Monahan D, Coppel Y, Antorrena G, Lecante P, Philippot K, Chaudret B (2014) Chem Eur J 20:1287–1297

    CAS  Google Scholar 

  76. Favier I, Massou S, Teuma E, Philippot K, Chaudret B, Gomez M (2008) Chem Commun 3296–3298

    Google Scholar 

  77. Jansat S, Gomez M, Philippot K, Muller G, Guiu E, Claver C, Castillon S, Chaudret B (2004) J Am Chem Soc 126:1592–1593

    CAS  Google Scholar 

  78. Favier I, Gomez M, Muller G, Axet MR, Castillon S, Claver C, Jansat S, Chaudret B, Philippot K (2007) Adv Synth Catal 349:2459–2469

    CAS  Google Scholar 

  79. Weitz DA, Huang JS, Lin MY, Sung J (1985) Phys Rev Lett 54:1416

    CAS  Google Scholar 

  80. Favier I, Lavedan P, Massou S, Teuma E, Philippot K, Chaudret B, Gómez M (2013) Top Catal 56:1253–1261

    CAS  Google Scholar 

  81. Vignolle J, Tilley TD (2009) Chem Commun 7230–7232

    Google Scholar 

  82. Lara P, Rivada-Wheelaghan O, Conejero S, Poteau R, Philippot K, Chaudret B (2011) Angew Chem Int Ed 50:12080–12084

    CAS  Google Scholar 

  83. Gonzalez-Galvez D, Lara P, Rivada-Wheelaghan O, Conejero S, Chaudret B, Philippot K, van Leeuwen PWNM (2013) Catal Sci Technol 3:99–105

    CAS  Google Scholar 

  84. Wang D, Li Y (2011) Adv Mater 23:1044

    CAS  Google Scholar 

  85. Zeng H, Sun S (2008) Adv Funct Mater 18:391

    CAS  Google Scholar 

  86. Jun Y-W, Choi J-S, Cheon J (2007) Chem Commun 12:1203

    Google Scholar 

  87. Cozzoli PD, Pellegrino T, Manna L (2006) Chem Soc Rev 35:1195

    CAS  Google Scholar 

  88. Bradley JS, Hill EW, Chaudret B, Duteil A (1995) Langmuir 11:693

    CAS  Google Scholar 

  89. Pan C, Dassenoy F, Casanove M-J, Philippot K, Amiens C, Lecante P, Mosset A, Chaudret B (1999) J Phys Chem B 103:10098

    CAS  Google Scholar 

  90. Dassenoy F, Casanove M-J, Lecante P, Pan C, Philippot K, Amiens C, Chaudret B (2001) Phys Rev B 63:235407

    Google Scholar 

  91. Lara P, Casanove M-J, Lecante P, Fazzini P-F, Philippot K, Chaudret B (2012) J Mater Chem 22:3578

    CAS  Google Scholar 

  92. Lara P, Ayvali T, Casanove M-J, Lecante P, Fazzini P-F, Philippot K, Chaudret B (2013) Dalton Trans 42:372

    CAS  Google Scholar 

  93. Kelsen V, Meffre A, Fazzini P-F, Lecante P, Chaudret B (2014) ChemCatChem. doi:10.1002/cctc.201300907

    Google Scholar 

  94. Bonnefille E, Novio F, Gutmann T, Poteau R, Lecante P, Jumas J-C, Philippot K, Chaudret B (2014) Nanoscale. doi:10.1039/C4NR00791C

    Google Scholar 

  95. Baddeley CJ, Jones TE, Trant AG, Wilson K (2011) Top Catal 54:1348–1356

    CAS  Google Scholar 

  96. Jansat S, Picurelli D, Pelzer L, Philippot K, Gomez M, Muller G, Lecante P, Chaudret B (2006) New J Chem 30:115–122

    CAS  Google Scholar 

  97. Gual A, Axet MR, Philippot K, Chaudret B, Denicourt-Nowicki A, Roucoux A, Castillón S, Claver C (2008) Chem Commun 2759–2761

    Google Scholar 

  98. Gonzalez-Galvez D, Nolis P, Philippot K, Chaudret B, van Leeuwen PWNM (2012) ACS Catal 2:317–321

    CAS  Google Scholar 

  99. Ackermann L (2006) Synthesis 1557–1571

    Google Scholar 

  100. Ackermann L, Born R, Spatz JH, Althammer A, Gschrei CJ (2006) Pure Appl Chem 78:209–214

    CAS  Google Scholar 

  101. Wolpers A, Ackermann L, Vana P (2010) Macromol Chem Phys 212:259–265

    Google Scholar 

  102. Rafter E, Gutmann T, Löw F, Buntkowsky G, Philippot K, Chaudret B, van Leeuwen PWNM (2013) Catal Sci Technol 3:595–599

    CAS  Google Scholar 

  103. Stephens FH, Pons V, Baker RT (2007) Dalton Trans 25:2613–2626

    Google Scholar 

  104. Zahmakıran M, Philippot K, Özkar S, Chaudret B (2012) Dalton Trans 41:590–598

    Google Scholar 

  105. Zahmakiran M, Tristany M, Philippot K, Fajerwerg K, Özkar S, Chaudret B (2010) Chem Commun 46:2938–29540

    CAS  Google Scholar 

  106. Debouttière PJ, Martinez V, Philippot K, Chaudret B (2009) Dalton Trans 10172–10174

    Google Scholar 

  107. Debouttière PJ, Coppel Y, Denicourt-Nowicki A, Roucoux A, Chaudret B, Philippot K (2012) Eur J Inorg Chem 1229–1236

    Google Scholar 

  108. Gutmann T, Bonnefille E, Breitzke H, Debouttière P-J, Philippot K, Poteau R, Buntkowsky G, Chaudret B (2013) PCCP 15:17383–17394

    CAS  Google Scholar 

  109. Guerrero M, Roucoux A, Denicourt-Nowicki A, Bricout H, Monflier E, Collière V, Fajerwerg K, Philippot K (2012) Catal Today 183:34–41

    CAS  Google Scholar 

  110. Guerrero M, Coppel Y, Chau NTT, Roucoux A, Denicourt-Nowicki A, Monflier E, Bricout H, Lecante P, Philippot K (2013) ChemCatChem 12:3802–3811

    Google Scholar 

  111. Yan N, Xiao C, Kou Y (2010) Coord Chem Rev 254:1179–1218

    CAS  Google Scholar 

  112. Hallett JP, Welton T (2011) Chem Rev 111:3508–3576

    CAS  Google Scholar 

  113. Pârvulescu VI, Hardacre C (2007) Chem Rev 107:2615–2665

    Google Scholar 

  114. Pádua AAH, Costa Gomes MC, Canongia Lopes JNA (2007) Acc Chem Res 40:1087–1096

    Google Scholar 

  115. Pensado AS, Pádua AAH (2011) Angew Chem Int Ed 50:8683–8687

    CAS  Google Scholar 

  116. Prechtl MHG, Scariot M, Scholten JD, Machado G, Teixeira SR, Dupont J (2008) Inorg Chem 47:8995–9001

    CAS  Google Scholar 

  117. Prechtl MHG, Scholten JD, Dupont J (2009) J Mol Chem 313:74–78

    CAS  Google Scholar 

  118. Scholten JD, Leal BC, Dupont J (2012) ACS Catal 2:184–200

    CAS  Google Scholar 

  119. Raluy E, Favier I, Lopez-Vinasco AM, Pradel C, Martin E, Madec D, Teuma E, Gomez M (2011) Phys Chem Chem Phys 13:13579–13584

    CAS  Google Scholar 

  120. Rodriguez-Perez L, Pradel C, Serp P, Gomez M, Teuma E (2011) ChemCatChem 3:749–754

    CAS  Google Scholar 

  121. Gutel T, Garcia-Anton J, Pelzer K, Philippot K, Santini CC, Chauvin Y, Chaudret B, Basset JM (2007) J Mater Chem 17:3290–3292

    CAS  Google Scholar 

  122. Gutel T, Santini CC, Philippot K, Padua A, Pelzer K, Chaudret B, Chauvin Y, Basset J-M (2009) J Mat Chem 19:3624–3631

    CAS  Google Scholar 

  123. Campbell PS, Santini CC, Bouchu D, Fenet B, Philippot K, Chaudret B, Padua AAH, Chauvin Y (2010) Phys Chem Chem Phys 12:4217–4223

    CAS  Google Scholar 

  124. Salas G, Santini CC, Philippot K, Colliere V, Chaudret B, Fenet B, Fazzini PF (2011) Dalton Trans 40:4660–4668

    CAS  Google Scholar 

  125. Salas G, Podgorsek A, Campbell PS, Santini CC, Padua AAH, Gomes MFC, Philippot K, Chaudret B, Turmine M (2011) Phys Chem Chem Phys 13:13527–13536

    CAS  Google Scholar 

  126. Salas G, Campbell PS, Santini CC, Philippot K, Costa Gomes MF, Padua AAH (2012) Dalton Trans 41:13919–13926

    CAS  Google Scholar 

  127. Bond GC, Louis C, Thompson DT (2006) Catalysis by gold. Imperial College Press, London

    Google Scholar 

  128. Pelzer K, Philippot K, Chaudret B, Meyer-Zaika W, Schmid GZ (2003) Anorg Allg Chem 629:1217–1222

    CAS  Google Scholar 

  129. Kormann H-P, Schmid G, Pelzer K, Philippot K, Chaudret B (2004) Z Anorg Allg Chem 630:1913–1918

    CAS  Google Scholar 

  130. Jansat S, Pelzer K, García-Antón J, Raucoules R, Philippot K, Maisonnat A, Chaudret B, Guari Y, Medhi A, Reyé C, Corriu RJP (2007) Adv Funct Mater 17:3339–3347

    CAS  Google Scholar 

  131. Matsura V, Guari Y, Reyé C, Corriu RJP, Tristany M, Jansat S, Philippot K, Maisonnat A, Chaudret B (2009) Adv Funct Mater 19:3781–3787

    CAS  Google Scholar 

  132. Tristany M, Philippot K, Guari Y, Collière V, Lecante P, Chaudret B (2010) J Mater Chem 20:9523–9530

    CAS  Google Scholar 

  133. Castillejos E, Debouttière P-J, Roiban L, Solhy A, Martinez V, Kihn Y, Ersen O, Philippot K, Chaudret B, Serp P (2009) Angew Chem Int Ed 48:2529–2533

    CAS  Google Scholar 

  134. García-Suárez EJ, Tristany M, García AB, Collière V, Philippot K (2012) Micropor Mesopor Mater 153:155–162

    Google Scholar 

Download references

Acknowledgments

All our collaborators are greatly acknowledged for their fruitful contributions. We also thank CNRS, University Paul Sabatier at Toulouse University, Institut des Sciences Appliquées at Toulouse (INSA), the Midi-Pyrénées region (including CTP program), ANR (SIDERUS-ANR-08-BLAN-0010-03; SUPRANANO-ANR-09-BLAN-0194), ANR-DFG (MOCA-NANO-ANR-11-INTB-1011 and DFG-911/19-1), INTERREG SUDOE (TRAIN 2 project), EU (ARTIZYMES STREP-FP6-2003-NEST-B3-0151471; SYNFLOW FP7-NMP2-Large program 2010–246461; NANOSONWINGS ERC Advanced Grant-2009-246763), CAPES-COFECUB, CONACyt, ANRT and Sasol for financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karine Philippot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Philippot, K., Lignier, P., Chaudret, B. (2014). Organometallic Ruthenium Nanoparticles and Catalysis. In: Dixneuf, P., Bruneau, C. (eds) Ruthenium in Catalysis. Topics in Organometallic Chemistry, vol 48. Springer, Cham. https://doi.org/10.1007/3418_2014_83

Download citation

Publish with us

Policies and ethics