Skip to main content

FascinATES: Mixed-Metal Ate Compounds That Function Synergistically

  • Chapter
  • First Online:
Organo-di-Metallic Compounds (or Reagents)

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 47))

Abstract

Ate complexes are generally thought of as having a cationic and an anionic moiety, each containing a metal atom, though these moieties can be contacted or separated depending on the system. They have been known for over 150 years but yet only recently has it dawned on synthetic chemists that ates can bring about lots of improvements to the metalation reaction. Alkali-metal magnesiates, zincates and aluminates in particular have been successfully utilized in metal-hydrogen exchange reactions of challenging weakly acidic aromatic substrates. The fascination of these mixed-metal reagents lies in their ability to effect unique deprotonations at ambient temperatures without attacking functional groups on the aromatic scaffold where conventional organolithium reagents would require subambient temperatures to reduce such attacks, to direct metalation to the meta position of certain substrates where ortho or lateral deprotonation is more common and to strip more than one hydrogen atom from multi-C-H bonded compounds where lithiation methods would generally fail. Furthermore some of these superficially simple ate-metal-induced deprotonation reactions produce complex but beautiful host-guest macrocyclic architectures referred to as inverse crowns. Since magnesium, zinc and aluminium organic compounds cannot replicate these metalation reactions, these alkali-metal-mediated reactions are synergistic in origin. This article is not intended to be comprehensive but provides a representative selection of these fascinates in action, with emphasis on their synergistic nature. Reactions of the heteroleptic alkyl-amido magnesiate TMEDA·Na(TMP)(nBu)Mg(TMP) and zincate TMEDA·Na(TMP)(tBu)Zn(tBu) are featured prominently (TMP is 2,2,6,6-tetramethylpiperidide).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Collum DB (1993) Acc Chem Res 26:227

    CAS  Google Scholar 

  2. Tidwell TT (2001) Angew Chem Int Ed 40:331

    CAS  Google Scholar 

  3. Mulvey RE, Robertson SD (2013) Top Organomet Chem 45:103

    CAS  Google Scholar 

  4. Schlenk W, Holtz J (1917) Ber Dtsch Chem Ges 50:262

    CAS  Google Scholar 

  5. Schlenk W, Bergmann E (1928) Liebigs Ann 463:98

    CAS  Google Scholar 

  6. Schlenk W, Schlenk W Jr (1928) Chem Ber 62:920

    Google Scholar 

  7. Clayden J (2002) Organolithiums: selectivity for synthesis. Elsevier, Oxford

    Google Scholar 

  8. Lappert M, Power P, Protchenko A, Seeber A (2009) Metal amide chemistry. Wiley, Chichester

    Google Scholar 

  9. Mulvey RE, Robertson SD (2013) Angew Chem Int Ed 52:11470

    CAS  Google Scholar 

  10. Wanklyn JA (1858) Liebigs Ann 108:67

    Google Scholar 

  11. Wanklyn JA (1858) Proc R Soc London 9:341

    Google Scholar 

  12. Smith MB (2013) March’s advanced organic chemistry. Wiley, New York

    Google Scholar 

  13. Merkel S, Stern D, Henn J, Stalke D (2009) Angew Chem Int Ed 48:6350

    CAS  Google Scholar 

  14. Haag B, Mosrin M, Ila H, Malakhov V, Knochel P (2011) Angew Chem Int Ed 50:9794

    CAS  Google Scholar 

  15. García-Álvarez P, Graham DV, Hevia E, Kennedy AR, Klett J, Mulvey RE, O’Hara CT, Weatherstone S (2008) Angew Chem Int Ed 47:8079

    Google Scholar 

  16. Armstrong DR, García-Álvarez P, Kennedy AR, Mulvey RE, Parkinson JA (2010) Angew Chem Int Ed 49:3185

    CAS  Google Scholar 

  17. Wunderlich SH, Knochel P (2009) Angew Chem Int Ed 48:9717

    CAS  Google Scholar 

  18. Jeganmohan M, Knochel P (2010) Angew Chem Int Ed 49:8520

    CAS  Google Scholar 

  19. Bernhardt S, Manolikakes G, Kunz T, Knochel P (2011) Angew Chem Int Ed 50:9205

    CAS  Google Scholar 

  20. Stathakis CI, Bernhardt S, Quint V, Knochel P (2012) Angew Chem Int Ed 51:9428

    CAS  Google Scholar 

  21. Stathakis CI, Manolikakes SM, Knochel P (2013) Org Lett 15:1302

    CAS  Google Scholar 

  22. Wittig G, Meyer FJ, Lange G (1951) Justus Liebigs Ann Chem 571:167

    CAS  Google Scholar 

  23. Wittig G (1958) Angew Chem 70:65

    Google Scholar 

  24. Wittig G (1966) Q Rev Chem Soc 20:191

    CAS  Google Scholar 

  25. Lochmann L, Pospíšil J, Vodňanský J, Trekoval J, Lím D (1967) Collect Czech Chem Commun 30:2187

    Google Scholar 

  26. Schlosser M (1967) J Organomet Chem 8:9

    CAS  Google Scholar 

  27. Broaddus CD (1970) J Org Chem 35:10

    CAS  Google Scholar 

  28. Kennedy AR, MacLellan JG, Mulvey RE (2001) Angew Chem Int Ed 40:3245

    CAS  Google Scholar 

  29. Unkelbach C, O’Shea DF, Strohmann C (2014) Angew Chem Int Ed 53:553

    Google Scholar 

  30. Gros P, Fort Y, Queguiner G, Caubère P (1995) Tetrahedron Lett 36:4791

    CAS  Google Scholar 

  31. Caubère P (1993) Chem Rev 93:2317

    Google Scholar 

  32. Fleming P, O’Shea DF (2011) J Am Chem Soc 133:1698

    CAS  Google Scholar 

  33. Blangetti M, Fleming P, O’Shea DF (2011) Beilstein J Org Chem 7:1249

    CAS  Google Scholar 

  34. Blangetti M, Fleming P, O’Shea DF (2012) J Org Chem 77:2870

    CAS  Google Scholar 

  35. Weiss E (1993) Angew Chem Int Ed 32:1501

    Google Scholar 

  36. Thoennes D, Weiss E (1978) Chem Ber 111:3726

    CAS  Google Scholar 

  37. Greiser T, Kopf J, Thoennes D, Weiss E (1981) Chem Ber 114:209

    CAS  Google Scholar 

  38. Schubert B, Weiss E (1984) Chem Ber 117:366

    CAS  Google Scholar 

  39. Carrella LM, Clegg W, Graham DV, Hogg LM, Kennedy AR, Klett J, Mulvey RE, Rentschler E, Russo L (2007) Angew Chem Int Ed 46:4662

    CAS  Google Scholar 

  40. Weiss E, Wolfrum R (1968) Chem Ber 101:35

    CAS  Google Scholar 

  41. Mobley TA, Berger S (1999) Angew Chem Int Ed 38:3070

    CAS  Google Scholar 

  42. Baillie SE, Clegg W, García-Álvarez P, Hevia E, Kennedy AR, Klett J, Russo L (2012) Organometallics 31:5131

    CAS  Google Scholar 

  43. Baillie SE, Clegg W, García-Álvarez P, Hevia E, Kennedy AR, Klett J, Russo L (2011) Chem Commun 47:388

    CAS  Google Scholar 

  44. Snieckus V (1990) Chem Rev 90:879

    CAS  Google Scholar 

  45. Schlosser M (2005) Angew Chem Int Ed 44:376

    CAS  Google Scholar 

  46. Campos KR (2007) Chem Soc Rev 36:1069

    CAS  Google Scholar 

  47. Gilman H, Bebb RL (1939) J Am Chem Soc 61:109

    Google Scholar 

  48. Wittig G, Fuhrmann G (1940) Ber Dtsch Chem Ges B 73:1197

    Google Scholar 

  49. Whisler MC, MacNeil S, Snieckus V, Beak P (2004) Angew Chem Int Ed 43:2206

    CAS  Google Scholar 

  50. Beak P, Brown RA (1982) J Org Chem 47:34

    CAS  Google Scholar 

  51. Beak P, Brown RA (1977) J Org Chem 42:1823

    CAS  Google Scholar 

  52. Beak P, Brubaker GR, Farney RF (1975) J Am Chem Soc 98:3621

    Google Scholar 

  53. Balloch L, Kennedy AR, Mulvey RE, Rantanen T, Robertson SD, Snieckus V (2011) Organometallics 30:145

    CAS  Google Scholar 

  54. Uchiyama M, Naka H, Matsumoto Y, Ohwada T (2004) J Am Chem Soc 126:10526

    CAS  Google Scholar 

  55. Harder S, Boersma J, Brandsma L, van Mier GPM, Kanters JA (1989) J Organomet Chem 364:1

    CAS  Google Scholar 

  56. Mulvey RE, Armstrong DR, Conway B, Crosbie E, Kennedy AR, Robertson SD (2011) Inorg Chem 50:12241

    CAS  Google Scholar 

  57. Conway B, Crosbie E, Kennedy AR, Mulvey RE, Robertson SD (2012) Chem Commun 48:4674

    CAS  Google Scholar 

  58. Fu J-m, Zhao B-p, Sharp MJ, Snieckus V (1991) J Org Chem 56:1683

    CAS  Google Scholar 

  59. Armstrong DR, Clegg W, Dale SH, Hevia E, Hogg LM, Honeyman GW, Mulvey RE (2006) Angew Chem Int Ed 45:3775

    CAS  Google Scholar 

  60. Wittig G, Merkle H (1942) Ber Dtsch Chem Ges B B75:1491

    Google Scholar 

  61. Lepley AR, Khan WA, Giumanini AB, Giumanini AG (1966) J Org Chem 31:2047

    CAS  Google Scholar 

  62. Armstrong DR, Balloch L, Hevia E, Kennedy AR, Mulvey RE, O’Hara CT, Robertson SD (2011) Beilstein J Org Chem 7:1234

    CAS  Google Scholar 

  63. Hevia E, Gallagher DJ, Kennedy AR, Mulvey RE, O’Hara CT, Talmard C (2004) Chem Commun 2422

    Google Scholar 

  64. Andrikopoulos PC, Armstrong DR, Graham DV, Hevia E, Kennedy AR, Mulvey RE, O’Hara CT, Talmard C (2005) Angew Chem Int Ed 44:3459

    CAS  Google Scholar 

  65. Eberhardt GG, Butte WA (1964) J Org Chem 29:2928

    CAS  Google Scholar 

  66. Phipps RJ, Gaunt MJ (2009) Science 323:1593

    CAS  Google Scholar 

  67. Leow D, Li G, Mei T-S, Yu J-Q (2012) Nature 486:518

    CAS  Google Scholar 

  68. Kondo Y, Shilai M, Uchiyama M, Sakamoto T (1999) J Am Chem Soc 121:3539

    CAS  Google Scholar 

  69. Imahori T, Uchiyama M, Sakamoto T, Kondo Y (2001) Chem Commun 2450

    Google Scholar 

  70. Uchiyama M, Miyoshi T, Kajihara Y, Sakamoto T, Otani Y, Ohwada T, Kondo Y (2002) J Am Chem Soc 124:8514

    CAS  Google Scholar 

  71. Andrikopoulos PC, Armstrong DR, Barley HRL, Clegg W, Dale SH, Hevia E, Honeyman GW, Kennedy AR, Mulvey RE (2005) J Am Chem Soc 127:6184

    CAS  Google Scholar 

  72. Uchiyama M, Matsumoto Y, Nobuto D, Furuyama T, Yamaguchi K, Morokuma K (2006) J Am Chem Soc 128:8748

    CAS  Google Scholar 

  73. Clegg W, Dale SH, Drummond AM, Hevia E, Honeyman GW, Mulvey RE (2006) J Am Chem Soc 128:7434

    CAS  Google Scholar 

  74. Uchiyama M, Matsumoto Y, Usui S, Hashimoto Y, Morokuma K (2007) Angew Chem Int Ed 46:926

    CAS  Google Scholar 

  75. Kondo Y, Morey JV, Morgan JC, Naka H, Nobuto D, Raithby PR, Uchiyama M, Wheatley AEH (2007) J Am Chem Soc 129:12734

    CAS  Google Scholar 

  76. Clegg W, Conway B, Hevia E, McCall MD, Russo L, Mulvey RE (2009) J Am Chem Soc 131:2375

    CAS  Google Scholar 

  77. Clegg W, Conway B, García-Álvarez P, Kennedy AR, Mulvey RE, Russo L, Sassmannshausen J, Tuttle T (2009) Chem Eur J 15:10702

    CAS  Google Scholar 

  78. Mongin F, Uchiyama M (2011) Curr Org Chem 15:2340

    CAS  Google Scholar 

  79. Kadiyala RR, Tilly D, Nagaradja E, Roisnel T, Matulis VE, Ivashkevich OA, Halauko YS, Chevallier F, Gros PC, Mongin F (2013) Chem Eur J 19:7944

    CAS  Google Scholar 

  80. Snégaroff K, Komagawa S, Chevallier F, Gros P, Golhen S, Roisnel T, Uchiyama M, Mongin F (2010) Chem Eur J 16:8191

    Google Scholar 

  81. García-Álvarez P, Mulvey RE, Parkinson JA (2011) Angew Chem Int Ed 50:9668

    Google Scholar 

  82. Armstrong DR, Kennedy AR, Mulvey RE, Parkinson JA, Robertson SD (2012) Chem Sci 3:2700

    CAS  Google Scholar 

  83. Li D, Keresztes I, Hopson R, Williard PG (2009) Acc Chem Res 42:270

    CAS  Google Scholar 

  84. Broaddus CD (1966) J Am Chem Soc 88:4174

    CAS  Google Scholar 

  85. Armstrong DR, Kennedy AR, Mulvey RE, Rowlings RB (1999) Angew Chem Int Ed 38:131

    CAS  Google Scholar 

  86. Martinez-Martinez AJ, Armstrong DR, Conway B, Fleming BJ, Klett J, Kennedy AR, Mulvey RE, Robertson SD, O’Hara CT (2014) Chem Sci 5:771

    CAS  Google Scholar 

  87. Blair VL, Carrella LM, Clegg W, Conway B, Harrington RW, Hogg LM, Klett J, Mulvey RE, Rentschler E, Russo L (2008) Angew Chem Int Ed 47:6208

    CAS  Google Scholar 

  88. Andrews PC, Kennedy AR, Mulvey RE, Raston CL, Roberts BA, Rowlings RB (2000) Angew Chem Int Ed 39:1960

    CAS  Google Scholar 

  89. Armstrong DR, Clegg W, Dale SH, Graham DV, Hevia E, Hogg LM, Honeyman GW, Kennedy AR, Mulvey RE (2007) Chem Commun 598

    Google Scholar 

  90. Henderson KW, Kennedy AR, Mulvey RE, O’Hara CT, Rowlings RB (2001) Chem Commun 1678

    Google Scholar 

  91. Clegg W, Henderson KW, Kennedy AR, Mulvey RE, O’Hara CT, Rowlings RB, Tooke DM (2001) Angew Chem Int Ed 40:3902

    CAS  Google Scholar 

  92. Andrikopoulos PC, Armstrong DR, Clegg W, Gilfillan CJ, Hevia E, Kennedy AR, Mulvey RE, O’Hara CT, Parkinson JA, Tooke DM (2004) J Am Chem Soc 126:11612

    CAS  Google Scholar 

  93. Stoll AH, Mayer P, Knochel P (2007) Organometallics 26:6694

    CAS  Google Scholar 

  94. Sánchez Perucha A, Heilmann-Brohl J, Bolte M, Lerner H-W, Wagner M (2008) Organometallics 27:6170

    Google Scholar 

  95. Reichert A, Schmidt J, Bolte M, Wagner M, Lerner H-W (2013) Z Anorg Allg Chem 639:1083

    CAS  Google Scholar 

  96. Balloch L, Garden JA, Kennedy AR, Mulvey RE, Rantanen T, Robertson SD, Snieckus V (2012) Angew Chem Int Ed 51:6934

    CAS  Google Scholar 

  97. Bates RB, Kroposki LM, Potter DE (1972) J Org Chem 37:560

    CAS  Google Scholar 

  98. Kennedy AR, Klett J, Mulvey RE, Wright DS (2009) Science 326:706

    CAS  Google Scholar 

  99. Crosbie E, García-Álvarez P, Kennedy AR, Klett J, Mulvey RE, Robertson SD (2010) Angew Chem Int Ed 49:9388

    CAS  Google Scholar 

  100. Naka H, Uchiyama M, Matsumoto Y, Wheatley AEH, McPartlin M, Morey JV, Kondo Y (2007) J Am Chem Soc 129:1921

    CAS  Google Scholar 

  101. Campbell R, Crosbie E, Kennedy AR, Mulvey RE, Naismith RA, Robertson SD (2013) Aust J Chem 66:1189

    CAS  Google Scholar 

  102. Conway B, García-Álvarez J, Hevia E, Kennedy AR, Mulvey RE, Robertson SD (2009) Organometallics 28:6462

    CAS  Google Scholar 

  103. Conway B, Kennedy AR, Mulvey RE, Robertson SD, García-Álvarez J (2010) Angew Chem Int Ed 49:3182

    CAS  Google Scholar 

  104. Hevia E, Kennedy AR, Klett J, McCall MD (2009) Chem Commun 3240

    Google Scholar 

  105. Mulvey RE (2013) Dalton Trans 42:6676

    CAS  Google Scholar 

  106. Mulvey RE, Blair VL, Clegg W, Kennedy AR, Klett J, Russo L (2010) Nature Chem 2:588

    CAS  Google Scholar 

  107. Kennedy AR, Klett J, Mulvey RE, Newton S, Wright DS (2008) Chem Commun 308

    Google Scholar 

  108. Filatov AS, Zabula AV, Spisak SN, Rogachev AY, Petrukhina MA (2013) Angew Chem Int Ed 52:5033

    Google Scholar 

Download references

Acknowledgements

Firstly we thank Professor Zhenfeng Xi for giving us this opportunity to contribute to this exciting book project. Secondly we are extremely grateful to all of the past researchers in the Mulvey group whose names appear in the cited papers for their hard work, dedication, friendship and fun times down the years. Thirdly we especially thank the present group members, Donna Ramsay, Sarah Leenhouts, Jenni Garden, Markus Granitzka and Samantha Orr for the difficult task of continuing to add to the wonder of synergistic mixed-metal chemistry. Special mention must be given to Eva Hevia, Charlie O’Hara and Jan Klett for their help in developing this chemistry over the past 10 years or so. It has been very much a team effort and these colleagues have been VIPs within it. Active sponsorship during the writing of this article from the Royal Society/Wolfson Foundation, the Royal Society of Edinburgh, the EPSRC and AstraZeneca is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert E. Mulvey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mulvey, R.E., Robertson, S.D. (2013). FascinATES: Mixed-Metal Ate Compounds That Function Synergistically. In: Xi, Z. (eds) Organo-di-Metallic Compounds (or Reagents). Topics in Organometallic Chemistry, vol 47. Springer, Cham. https://doi.org/10.1007/3418_2013_73

Download citation

Publish with us

Policies and ethics