Skip to main content

Organo-di-Lithio Reagents: Cooperative Effect and Synthetic Applications

  • Chapter
  • First Online:
Organo-di-Metallic Compounds (or Reagents)

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 47))

Abstract

The development of organometallic reagents remains one of the most important frontiers in synthetic chemistry. In this review, we summarize our research on the structures, reactions, and synthetic applications of 1,4-dilithio-1,3-butadienes as organo-di-lithio reagents. The 1,4-dilithio-1,3-butadienes bearing a wide variety of substitution patterns on the butadienyl skeleton can be readily prepared in high efficiency. The configuration has been predicted and demonstrated to favor a double dilithium bridging structure in both solution and solid states. The two Li atoms are bridged by a butadiene moiety and are in close proximity. By taking advantage of this unique configuration, we have developed useful and interesting synthetic methodologies. Three types of reactions of 1,4-dilithio-1,3-butadienes have been developed and are discussed: intramolecular reaction, intermolecular reaction, and transmetallation. First, intramolecular reaction is introduced as a result of the intra-cooperative effect among the two C–Li moieties, the butadienyl bridge, and the substituents. A useful transformation from silylated 1,4-dilithio-1,3-butadienes to α-lithio siloles is described. Second, we discuss an intermolecular reaction that results from the inter-cooperative effect of the two C–Li moieties toward substrates. The intermolecular reactions are featured with formation of oxy-cyclopentadienyl dilithium via the reaction of di-lithio reagents with CO and formation of a series of N-heterocycles via the reaction of di-lithio reagents with nitriles. Third, we discuss transmetallation of di-lithio reagents with aluminum, copper, iron, zinc, or barium salts to generate diversified organo-di-metallic or metallacyclic compounds. The dimetallic 1,4-dilithio-1,3-butadienes and their transmetallated derivatives provide unique synthetic organometallic reagents that are different from monometallic reagents, both in terms of reactivity and in synthetic application. These organo-di-metallic reagents provide the access to interesting and useful compounds that are not available by other means, such as N-, O-, and Si-containing heterocycles, strained ring systems, metal-containing macrocycles, and metal complexes bearing new types of ligand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ac:

Acetyl

Ad:

Adamantyl

Ar:

Aryl

Bn:

Benzyl

Bu:

Butyl

cat:

Catalyst

cod:

Cyclooctadiene

COT:

Cyclooctatetraene

Cp:

Cyclopentadienyl

DMAD:

Dimethyl azodicarboxylate

DME:

1,2-Dimethoxyethane

DMF:

Dimethylformamide

DMPU:

1,3-Dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone

DMSO:

Dimethyl sulfoxide

dppe:

1,2-Bis(diphenylphosphino)ethane

ee:

Enantiomer excess

equiv:

Equivalent(s)

Et:

Ethyl

h:

Hour(s)

Hex:

Hexyl

HMPA:

Hexamethylphosphoric triamide

i-Pr:

Isopropyl

LDA:

Lithium diisopropylamide

Me:

Methyl

min:

Minute(s)

mol:

Mole(s)

NBS:

N-bromosuccinimide

NCS:

N-chlorosuccinimide

Nu:

Nucleophile

Ph:

Phenyl

Pr:

Propyl

py:

Pyridine

rt:

Room temperature

s:

Second(s)

TBAF:

Tetrabutylammonium fluoride

t-Bu:

Tert-butyl

THF:

Tetrahydrofuran

TIPS:

Triisopropylsilyl

TMEDA:

N,N,N′,N′-Tetramethyl- 1,2-ethylenediamine

TMS:

Trimethylsilyl

Tol:

4-Methylphenyl

Ts:

4-toluenesulfonyl

References

  1. Rappoport Z, Marek I (2004) The chemistry of organolithium compounds. Wiley, Chichester

    Book  Google Scholar 

  2. Clayden J (2002) Organolithiums: selectivity for synthesis. Pergamon, Oxford

    Google Scholar 

  3. Gessner VH, Däschlein C, Stohmann C (2009) Structure formation principles and reactivity of organolithium compounds. Chem Eur J 15:3320–3334

    Article  CAS  Google Scholar 

  4. Lucht BL, Collum DB (1999) Lithium hexamethyldisilazide: a view of lithium ion solvation through a glass-bottom boat. Acc Chem Res 32:1035–1042

    Article  CAS  Google Scholar 

  5. Hoppe D, Hense T (1997) Enantioselective synthesis with lithium/(−)-sparteine carbanion pairs. Angew Chem Int Ed Engl 36:2282–2316

    Article  CAS  Google Scholar 

  6. Weiss E (1993) Structure of organo alkali metal complexes and related compounds. Angew Chem Int Ed Engl 32:1501–1523

    Article  Google Scholar 

  7. Najera C, Sansano JM, Yus M (2003) Recent synthetic uses of functionalised aromatic and heteroaromatic organolithium reagents prepared by non-deprotonating methods. Tetrahedron 59:9255–9303

    Article  CAS  Google Scholar 

  8. Langer P, Freiberg W (2004) Cyclization reactions of dianions in organic synthesis. Chem Rev 104:4125–4149

    Article  CAS  Google Scholar 

  9. Foubelo F, Yus M (2005) Organodilithium intermediates as useful dianionic synthons: recent advances. Curr Org Chem 9:459–490

    Article  CAS  Google Scholar 

  10. Wu W, Gu D, Wang S, Ning Y, Mao G (2011) Recent developments in homobimetallic reagents and catalysts for organic synthesis. Chin Sci Bull 56:1753–1769

    Article  CAS  Google Scholar 

  11. Ananikov VP, Hazipov OV, Beletskaya IP (2011) 1,4-Diiodo-1,3-dienes: versatile reagents in organic synthesis. Chem Asian J 6:306–323

    Article  CAS  Google Scholar 

  12. Xi Z (2004) Reaction chemistry of 1,4-Dilithio-1,3-diene and 1-lithio-1,3-diene derivatives. Eur J Org Chem 2773–2781

    Google Scholar 

  13. Xi Z (2010) 1,4-dilithio-1,3-dienes: reaction and synthetic applications. Acc Chem Res 43:1342–1351

    Article  CAS  Google Scholar 

  14. Zhang WX, Xi Z (2008) Synthetic methods for multiply substituted butadiene-containing building blocks. Synlett 2557–2570

    Google Scholar 

  15. Barluenga J, Fananas FJ, Sanz R, Ignacio JM (2003) Synthesis of pyrrole derivatives through functionalization of 3,4-Bis(lithiomethyl)dihydropyrroles. Eur J Org Chem 771–783

    Google Scholar 

  16. Leng L, Xi C, Shi Y, Guo B (2003) Dianionic cycloaddition of decatetraenes with RCOX forming nine-membered carbocycles. Synlett 183–186

    Google Scholar 

  17. Maercker A, Flierdt J, Girreser U (2000) Polylithiumorganic compounds. Part 27: C, C-bond forming reactions of 3,4-dilithio-2,5-dimethyl-2,4-hexadiene. Tetrahedron 56:3373–3383

    Article  CAS  Google Scholar 

  18. Lillo VJ, Gomez C, Yus M (2009) 2,2′-Dilithiobiphenyl by direct lithiation of biphenylene. Tetrahedron Lett 50:2266–2269

    Article  CAS  Google Scholar 

  19. Yus M, Ramon DJ, Gomez I (2002) Lithiophenylalkyllithiums: new dilithium reagents having both sp(2)- and sp(3)-hybridised remote carbanionic centres. J Organomet Chem 663:21–31

    Article  CAS  Google Scholar 

  20. Foubelo F, Saleh SA, Yus M (2000) 3-Chloropropyl and 4-chlorobutyl phenyl ethers as sources of 1,3-dilithiopropane and 1,4-dilithiobutane: sequential reaction with carbonyl compounds. J Org Chem 65:3478–3483

    Article  CAS  Google Scholar 

  21. Strohmann C, Lehmen K, Dilsky SA (2006) Monolithiated and its related 1,3-dilithiated allylsilane: syntheses, crystal structures, and reactivity. J Am Chem Soc 128:8102–8103

    Article  CAS  Google Scholar 

  22. Dubac J, Laporterie A, Manuel G (1990) Group 14 metalloles. 1. Synthesis, organic chemistry, and physicochemical data. Chem Rev 90:215–263

    Article  CAS  Google Scholar 

  23. Schlenk W, Bergmann E (1928) The products of the addition of alkali metals on multiple carbon-carbon fusions. Liebigs Ann Chem 463:71

    Article  Google Scholar 

  24. Smith LI, Hoehn HH (1941) The reaction between lithium and diphenylacetylene. J Am Chem Soc 63:1184–1187

    Article  CAS  Google Scholar 

  25. Kos AJ, PvR S (1980) Cyclic 4 stabilization. Combined Moebius-Hueckel aromaticity in doubly lithium bridged R4C4Li2 systems. J Am Chem Soc 102:7928–7929

    Article  CAS  Google Scholar 

  26. Schubert U, Neugebauer W, Schleyer PvR (1982) Symmetrical double lithium bridging in 2,2′-di(lithium-tmeda)biphenyl (tmeda = MeNCH2CH2NMe2): experimental confirmation of theoretical predictions. J Chem Soc Chem Commun 1184–1185

    Google Scholar 

  27. Ashe AJ III, Kampf JW, Savla PM (1993) The structure of (1Z,3Z)-1,4-Bis(trimethylsilyl)-1,4-bis(lithiotetramethylethylenediamine)-2,3-dimethyl-1,3-butadiene. A double bridged dilithium compound. Organometallics 12:3350–3353

    Article  CAS  Google Scholar 

  28. Pauer F, Power PP (1994) 1,4-Dilithio-1,2,3,4-tetraphenyl-butadiene – crystal structure of the 1,2-dimethoxyethane adduct. J Organomet Chem 474:27–30

    Article  CAS  Google Scholar 

  29. Saito M, Nakamura M, Tajima T, Yoshioka M (2007) Reduction of phenyl silyl acetylenes with lithium: unexpected formation of a dilithium dibenzopentalenide. Angew Chem Int Ed 46:1504–1507

    Article  CAS  Google Scholar 

  30. Liu L, Zhang WX, Luo Q, Li H, Xi Z (2010) Isolation and X-ray structure of a trimeric 1,4-dilithio-1, 3-butadiene and a dimeric Me3Si-substituted 1,4-dilithio-1,3-butadiene. Organometallics 29:278–281

    Article  CAS  Google Scholar 

  31. Liu L, Zhang WX, Wang C, Wang CY, Xi Z (2009) Isolation, structural characterization and synthetic application of oxy-cyclopentadienyl dianions. Angew Chem Int Ed 48:8111–8114

    Article  CAS  Google Scholar 

  32. Zhang S, Zhan M, Zhang WX, Xi Z (2013) 3‑D brick-wall polymeric structure of TMEDA-supported 1,4-dilithio-1,3-butadiene. Organometallics 32:4020–4023

    Article  CAS  Google Scholar 

  33. Li H, Wei B, Xu L, Zhang WX, Xi Z (2013) Barium dibenzopentalenide as a main-group metal η8 complex: facile synthesis from 1,4-dilithio-1,3-butadienes and Ba[N(SiMe3)2]2, structural characterization and reaction chemistry. Angew Chem Int Ed 52:10822–10825

    Article  CAS  Google Scholar 

  34. Wang C, Luo Q, Sun H, Guo X, Xi Z (2007) Lithio siloles: facile synthesis and applications. J Am Chem Soc 129:3094–3095

    Article  CAS  Google Scholar 

  35. Luo Q, Gu L, Wang C, Liu J, Zhang WX, Xi Z (2009) Synthesis of functionalized siloles from Si-Tethered diynes. Tetrahedron Lett 50:3213–3215

    Article  CAS  Google Scholar 

  36. Luo Q, Wang C, Gu L, Zhang WX, Xi Z (2010) Formation of α-lithio siloles from silylated 1,4-dilithio-1,3-butadienes: mechanism and applications. Chem Asian J 5:1120–1128

    Article  CAS  Google Scholar 

  37. Knorr R, von Roman TF (1984) Configurational stability of vinyllithium derivatives with 1-trimethylsilyl and 1-alkoxy substituents. Angew Chem Int Ed 23:366–368

    Article  Google Scholar 

  38. Negishi E, Takahashi T (1986) The origin of the configurational instability of 1-silyl-1-alkenyllithiums and related alkenylmetals. J Am Chem Soc 108:3402–3408

    Article  CAS  Google Scholar 

  39. Wang Z, Fang H, Xi Z (2005) Cleavage of C-Si bond by intramolecular nucleophilic attack: lithiation-promoted formation of siloles from 1-bromo-4-tetrasubstituted silyl-1,3-butadiene derivatives. Tetrahedron Lett 46:499–501

    Article  CAS  Google Scholar 

  40. Hudrlik PF, Dai D, Hudrlik AM (2006) Reactions of dilithiobutadienes with monochlorosilanes: observation of facile loss of organic groups from silicon. J Organomet Chem 691:1257–1264

    Article  CAS  Google Scholar 

  41. Yamaguchi S, Xu C, Okamoto T (2006) Ladder-conjugated materials with main group elements. Pure Appl Chem 78:721–730

    CAS  Google Scholar 

  42. Tamao K, Yamaguchi S, Shiro M (1994) Oligosiloles: first synthesis based on a novel endo-endo mode intramolecular reductive cyclization of diethynylsilanes. J Am Chem Soc 116:11715–11722

    Article  CAS  Google Scholar 

  43. Xi Z, Song Q, Chen J, Guan H, Li P (2001) Dialkenylation of carbonyl groups by alkenyllithium compounds: formation of cyclopentadiene derivatives by the reaction of 1,4-dilithio-1,3-dienes with ketones and aldehydes. Angew Chem Int Ed 40:1913–1916

    Article  CAS  Google Scholar 

  44. Fang H, Li G, Mao G, Xi Z (2004) Reactions of substituted (1,3-butadiene-1,4-diyl) magnesium, 1,4-bis(bromomagnesio) butadienes and 1,4-dilithiobutadienes with ketones, aldehydes and PhNO to yield cyclopentadiene derivatives and N-Ph pyrroles by cyclodialkenylation. Chem Eur J 10:3444–3450

    Article  CAS  Google Scholar 

  45. Chen J, Song Q, Li P, Guan H, Jin X, Xi Z (2002) Stereoselective synthesis of polysubstituted 2,5-dihydrofurans from reaction of 1,4-dilithio-1,3-dienes with aldehydes. Org Lett 4:2269–2271

    Article  CAS  Google Scholar 

  46. Gautam DR, Litinas KE, Fylaktakidou KC, Nicolaides DNJ (2003) Reactions of o-quinones with α-methyl- (or methylene) substituted phosphorus ylides. Synthesis of benzo[b]furan derivatives. Heterocycl Chem 40:399–404

    Article  CAS  Google Scholar 

  47. Mandal S, Macikenas D, Protasiewicz JD, Sayre LM (2000) Novel tert-butyl migration in copper-mediated phenol ortho-oxygenation implicates a mechanism involving conversion of a 6-hydroperoxy-2,4-cyclohexadienone directly to an o-quinone. J Org Chem 65:4804–4809

    Article  CAS  Google Scholar 

  48. Nguyen VH, Nishino H (2004) Novel synthesis of dihydropyrans and 2,8-dioxabicylo[3.3.0]oct-3-enes using Mn(III)-based oxidative cyclization. Tetrahedron Lett 45:3373–3377

    Article  CAS  Google Scholar 

  49. Mao G, Lu J, Xi Z (2004) Formation of 2,6-dioxabicyclo[3.3.0]-octa-3,7-dienes or multiply substituted o-benzoquinones from reactions of 1,4-dilithio-1,3-dienes with dimethyl oxalate. Tetrahedron Lett 45:8095–8098

    Article  CAS  Google Scholar 

  50. Wakefield BS (1988) Organolithium methods. Academic, San Diego

    Google Scholar 

  51. Zadel G, Breitmaier E (1992) A one-pot synthesis of ketones and aldehydes from carbon dioxide and organolithium compounds. Angew Chem Int Ed Engl 31:1035–1036

    Article  Google Scholar 

  52. Xi Z, Song Q (2000) Efficient synthesis of cyclopentadieneone derivatives by the reaction of carbon dioxide with 1,4-dilithio-1,3-dienes. J Org Chem 65:9157–9159

    Article  CAS  Google Scholar 

  53. Wang C, Chen J, Song Q, Li Z, Xi Z (2003) Preparation of S-containing heterocycles via novel reaction patterns of carbon disulfide with 1-lithlobutadienes and 1,4-dilithiobutadienes. Arkivoc 155–164

    Google Scholar 

  54. Chen J, Song Q, Xi Z (2002) Novel reaction patterns of carbon disulfide with organolithium compounds via cleavage of C=S bonds or via cycloaddition reactions. Tetrahedron Lett 43:3533–3535

    Article  CAS  Google Scholar 

  55. Wang CY, Song Q, Xi Z (2004) Reactions of 1,4-dilithiobutadienes with isothiocyanates: preparation of iminocyclopentadiene derivatives via cleavage of the C=S double bond of a RN=C=S molecule. Tetrahedron 60:5207–5214

    Article  CAS  Google Scholar 

  56. Wang Z, Wang C, Xi Z (2006) Partially fluorinated naphthalene derivatives from 1,4-dilithio-1,3-dienes and C6F6. Tetrahedron Lett 47:4157–4160

    Article  CAS  Google Scholar 

  57. Seyferth D, Weinstein RM (1982) High-yield acyl-anion trapping reactions: a synthesis of acyltrimethylsilanes. J Am Chem Soc 104:5534–5535

    Article  CAS  Google Scholar 

  58. Murai S, Ryu I, Iriguchi J, Sonoda N (1984) Acyllithium to lithium enolate conversion by A 1,2-silicon shift. A shortcut to acylsilane enolates. J Am Chem Soc 106:2440–2442

    Article  CAS  Google Scholar 

  59. Song Q, Chen J, Jin X, Xi Z (2001) Highly regio- and stereoselective 1,1-cycloaddition of carbon monoxide with 1,4-dilithio-1,3-dienes. Novel synthetic methods for 3-cyclopenten-1-one derivatives. J Am Chem Soc 123:10419–10420

    Article  CAS  Google Scholar 

  60. Li H, Liu L, Wang Z, Zhao F, Zhang S, Zhang WX, Xi Z (2011) Iterative dianion relay along the ring: formation of gem-bis(trimethylsilyl) cyclopentenones from 2,5-bis(trimethylsilyl) oxy-cyclopentadienyl dianions and acid chlorides. Chem Eur J 17:7399–7403

    Article  CAS  Google Scholar 

  61. Li H, Zhang WX, Xi Z (2013) Alkaline-earth metallocenes coordinated with ester pendants: synthesis, structural characterization, and application in metathesis reaction. Chem Eur J 19:12859–12866

    Article  CAS  Google Scholar 

  62. Chen J, Song Q, Wang CY, Xi Z (2002) Novel cycloaddition of nitriles with monolithio- and dilithiobutadienes. J Am Chem Soc 124:6238–6239

    Article  CAS  Google Scholar 

  63. Yu N, Wang CY, Zhao F, Zhang W-X, Xi Z (2008) Diversified reaction chemistry of 1,4-dilithio-1,3-dienes with nitriles: fine-tuning of reaction patterns by substituents on the butadienyl skeleton leading to multi-substituted pyridines and/or Δ1-pyrrolines. Chem Eur J 14:5670–5679

    Article  CAS  Google Scholar 

  64. Mangelinckx S, Giubellina N, De Kimpe N (2004) 1-azaallylic anions in heterocyclic chemistry. Chem Rev 104:2353–2399

    Article  CAS  Google Scholar 

  65. Zhao F, Zhan M, Zhang WX, Xi Z (2013) DFT studies on the reaction mechanisms of 1,4-dilithio-1,3-dienes with nitriles affording pyridines and 1,3,5-triazines. Organometallics 32:2059–2068

    Article  CAS  Google Scholar 

  66. Williams RV (2001) Semibullvalenes and related molecules: ever closer approaches to neutral homoaromaticity. Eur J Org Chem 227–235

    Google Scholar 

  67. Williams RV (2001) Homoaromaticity. Chem Rev 101:1185–1204

    Article  CAS  Google Scholar 

  68. Dewar MJS, Náhlovská Z, Náhlovský BD (1971) Diazabullvalene; a “Nonclassical” molecule? Chem Commun 1377–1378

    Google Scholar 

  69. Schnieders C, Altenbach HJ, Müllen KA (1982) 2,6-diazasemibullvalene. Angew Chem Int Ed Engl 21:637–638

    Article  Google Scholar 

  70. Zhang S, Wei J, Zhan M, Luo Q, Wang C, Zhang WX, Xi Z (2012) 2,6-Diazasemibullvalenes: synthesis, structural characterization, reaction chemistry and theoretical analysis. J Am Chem Soc 134:11964–11967

    Article  CAS  Google Scholar 

  71. Zhang S, Zhan M, Luo Q, Zhang WX, Xi Z (2013) Oxidation of C–H bonds to C=O bonds by O2 only or N-oxides and DMSO: synthesis of Δ1-bipyrrolinones and pyrrolino[3,2-b]pyrrolinones from 2,6-diazasemibullvalenes. Chem Commun 49:6146–6148

    Article  CAS  Google Scholar 

  72. Zhang S, Zhang WX, Xi Z (2013) Lewis acid-catalyzed site-selective cycloadditions of 2,6-diazasemibullvalenes with isocyanides, azides and diazo compounds for the synthesis of diaza- and triaza-brexadiene derivatives. Angew Chem Int Ed 52:3485–3489

    Article  CAS  Google Scholar 

  73. Zhan M, Zhang S, Zhang WX, Xi Z (2013) Diazo compounds as electrophiles to react with 1,4-dilithio-1,3-dienes: efficient synthesis of 1-imino-pyrrole derivatives. Org Lett 15:4182–4185

    Article  CAS  Google Scholar 

  74. Kruger C, Sekutowski JC, Hoberg H, Krause-Going R (1977) (Pentaphenyl)aluminacyclopentadiene as a complexing ligand. The molecular structure of (pentaphenyl)aluminacyclopentadiene and its complex with 1,5-cyclooctadienenickel. J Organomet Chem 141:141–148

    Article  Google Scholar 

  75. Fang H, Zhao C, Li G, Xi Z (2003) Reaction of aluminacyclopentadienes with aldehydes affording cyclopentadiene derivatives. Tetrahedron 59:3779–3786

    Article  CAS  Google Scholar 

  76. Wang C, Yuan J, Li G, Wang Z, Zhang S, Xi Z (2006) Metal-mediated efficient synthesis, structural characterization and skeletal rearrangement of octa-substituted semibullvalenes. J Am Chem Soc 128:4564–4565

    Article  CAS  Google Scholar 

  77. Wang C, Xi Z (2007) Metal mediated synthesis of substituted cyclooctatetraenes. Chem Commun 5119–5133

    Google Scholar 

  78. Li G, Fan H, Zhang S, Xi Z (2004) Synthesis, structural characterization, and skeletal rearrangement of dibenzo tricyclo[3.3.0.02,6]-1,2,5,6-tetrasubstituted-octanes. Tetrahedron Lett 45:8399–8402

    Article  CAS  Google Scholar 

  79. Stiles M, Burckhardt U (1964) Thermal and photochemical rearrangement of substituted dibenzo[a, e]cyclooctatetraenes. J Am Chem Soc 86:3396–3397

    Article  CAS  Google Scholar 

  80. Müllen K, Wegner G (1998) Electronic materials: the oligomer approach. Wiley- VCH, Weinheim

    Google Scholar 

  81. Schwab PFH, Smith JR, Michl J (2005) Synthesis and properties of molecular rods. 2. Zig-Zag rods. Chem Rev 105:1197

    Article  CAS  Google Scholar 

  82. Li G, Fang H, Xi Z (2003) Formation of stereodefined multiply substituted all-cis octatetraenes, tricycle-[4.2.0.02,5]octa-3,7-dienes and pentalenes via CuCl or FeCl3-mediated dimerization of 1-lithiobutadienes and 1,4- dilithiobutadienes. Tetrahedron Lett 44:8705–8708

    Article  CAS  Google Scholar 

  83. Wei J, Wang Z, Zhang WX, Xi Z (2013) Construction of octa-alkyl substituted and deca-substituted all-cis octatetraenes via linear dimerization of 1,4-dicopper-1,3-butadienes and subsequent cross-coupling with halides. Org Lett 15:1222–1225

    Article  CAS  Google Scholar 

  84. Luo Q, Wang C, Zhang WX, Xi Z (2008) CuCl-mediated tandem CO insertion and annulation of 1,4-dilithio-1,3-dienes: formation of multiply substituted cyclopentadienones and/or their head-to-head dimers. Chem Commun 1593–1595

    Google Scholar 

  85. Li G, Fang H, Li Z, Xi Z (2003) FeCl3-mediated reaction of 1,4-dilithio-1,3-dienes with alkynes affording benzene derivatives. Chin J Chem 21:219–221

    CAS  Google Scholar 

  86. Knochel P, Almena J, Jones P (1998) Organozinc mediated reactions. Tetrahedron 54:8275–8319

    Article  CAS  Google Scholar 

  87. Wooten A, Carroll PJ, Maestri AG, Walsh PJ (2006) Unprecedented alkene complex of zinc(II): structures and bonding of divinylzinc complexes. J Am Chem Soc 128:4624–4631

    Article  CAS  Google Scholar 

  88. Zhou Y, Zhang WX, Xi Z (2012) 1,3-Butadienylzinctrimer formed via transmetallation from 1,4-dilithio-1,3-butadienes: synthesis, structural characterization and application in negishi cross-coupling. Organometallics 31:5546–5550

    Article  CAS  Google Scholar 

  89. Resa I, Carmona E, Gutierrez-Puebla E, Monge A (2004) Decamethyldizincocene, a stable compound of Zn(I) with a Zn-Zn bond. Science 305:1136–1138

    Article  CAS  Google Scholar 

  90. Negishi E (2011) Magical power of transition metals: past, present, and future. Angew Chem Int Ed 50:6738–6764

    Article  CAS  Google Scholar 

  91. Lambert C, PvR S (1994) Are polar organometallic compounds “carbanions”? The gegenion effect on structure and energies of alkali-metal compounds. Angew Chem Int Ed Engl 33:1129–1140

    Article  Google Scholar 

  92. Westerhausen M, Digeser MH, Nöth H, Seifert T, Pfitzner A (1998) A unique barium−carbon bond: mechanism of formation and crystallographic characterization. J Am Chem Soc 120:6722–6725

    Article  CAS  Google Scholar 

  93. Saito M (2010) Synthesis and reactions of dibenzo[a, e]pentalenes. Symmetry 2:950–969

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenfeng Xi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhang, S., Zhang, WX., Xi, Z. (2013). Organo-di-Lithio Reagents: Cooperative Effect and Synthetic Applications. In: Xi, Z. (eds) Organo-di-Metallic Compounds (or Reagents). Topics in Organometallic Chemistry, vol 47. Springer, Cham. https://doi.org/10.1007/3418_2013_71

Download citation

Publish with us

Policies and ethics