Skip to main content

Metal Nanoparticle Synthesis in Ionic Liquids

  • Chapter
  • First Online:
Ionic Liquids (ILs) in Organometallic Catalysis

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 51))

Abstract

The synthesis of metal nanoparticles (M-NPs) in ionic liquids (ILs) can start from metals, metal salts, metal complexes, and in particular metal carbonyls and can be carried out by chemical reduction, thermolysis, photochemical, microwave irradiation, sonochemical/ultrasound-induced decomposition, electroreduction, or gas-phase synthesis, including sputtering, plasma/glow-discharge electrolysis, physical vapor deposition, or electron beam and γ-irradiation. Metal carbonyls, M x (CO) y , are commercially available and elegant precursors because the metal atoms are already in the zerovalent oxidation state for M-NPs so that no reduction is necessary. The thermal decomposition of metal complexes, including metal carbonyls in ILs by microwave irradiation, provides a fast and low-energy access to M-NPs. The reason is an excellent absorption efficiency of ILs for microwave energy due to their high ionic charge, high polarity, and high dielectric constant. Ionic liquids allow for the stabilization of M-NPs without the need of additional stabilizers, surfactants, or capping ligands because of the electrostatic and steric properties inherent to ILs. From the IL dispersion, the M-NPs can be deposited on various surfaces, including graphene derivatives and nanotubes. The formation of intermetallic MM′-nanoalloys in ILs has just begun to be explored. Examples for M(M′)-NP/IL dispersions in catalytic reactions (C–C coupling, methanol synthesis, hydrogenation) are noted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yu S-H, MacGillivray LR, Janiak C (2012) CrystEngComm 14:7531–7534

    CAS  Google Scholar 

  2. Lu AH, Salabas EL, Schüth F (2007) Angew Chem Int Ed 46:1222–1244

    CAS  Google Scholar 

  3. Gedanken A (2004) Ultrason Sonochem 11:47–55

    CAS  Google Scholar 

  4. Rao CNR, Vivekchand SRC, Biswas K, Govindaraj A (2007) Dalton Trans 3728–3749

    Google Scholar 

  5. Mastai Y, Gedanken A (2004) In: Rao CNR, Müller A, Cheetham AK (eds) Chemistry of Nanomaterials, 1. Wiley-VCH, Weinheim, p 113

    Google Scholar 

  6. Park J, Joo J, Kwon SG, Jang Y, Hyeon T (2007) Angew Chem Int Ed 46:4630–4660

    CAS  Google Scholar 

  7. Peng Z, Yang H (2009) Nano Today 4:143–164

    CAS  Google Scholar 

  8. An K, Alayoglu S, Ewers T, Somorjai GA (2012) J Colloid Interface Sci 373:1–13

    CAS  Google Scholar 

  9. Kim M, Phan VN, Lee K (2012) CrystEngComm 14:7535–7548

    CAS  Google Scholar 

  10. Scholten JD, Leal BC, Dupont J (2012) ACS Catal 2:184–200

    CAS  Google Scholar 

  11. Yan N, Xiao C, Kou Y (2010) Coord Chem Rev 254:1179–1218

    CAS  Google Scholar 

  12. Pârvulescu VI, Hardacre C (2007) Chem Rev 107:2615–2665

    Google Scholar 

  13. Welther A, Jacobi von Wangelin A (2013) Curr Org Chem 17:326–335

    CAS  Google Scholar 

  14. Campbell PS, Prechtl MHG, Santini CC, Haumesser PH (2013) Curr Org Chem 17:414–429

    CAS  Google Scholar 

  15. Guerrero M, Than Chau NT, Noël S, Denicourt-Nowicki A, Hapiot F, Roucoux A, Monflier E, Philippot K (2013) Curr Org Chem 17:364–399

    CAS  Google Scholar 

  16. Scholten JD (2013) Curr Org Chem 17:348–363

    CAS  Google Scholar 

  17. Ostwald W (1901) Z Phys Chem 37:385

    Google Scholar 

  18. Ostwald W (1896) Lehrbuch der Allgemeinen Chemie, vol 2. Part 1. Wilhelm Engelmann, Leipzig

    Google Scholar 

  19. Bönnemann H, Richards RM (2001) Eur J Inorg Chem 2455–2480

    Google Scholar 

  20. Astruc D, Lu F, Aranzaes JR (2005) Angew Chem Int Ed 44:7852–7872

    CAS  Google Scholar 

  21. Pan C, Pelzer K, Philippot K, Chaudret B, Dassenoy F, Lecante P, Casanove M-J (2001) J Am Chem Soc 123:7584–7593

    CAS  Google Scholar 

  22. Aiken JD III, Finke RG (1999) J Am Chem Soc 121:8803–8810

    CAS  Google Scholar 

  23. Ueno K, Tokuda H, Watanabe M (2010) Phys Chem Chem Phys 12:1649–1658

    CAS  Google Scholar 

  24. Krämer J, Redel E, Thomann R, Janiak C (2008) Organometallics 27:1976–1978

    Google Scholar 

  25. Dupont J, Scholten JD (2010) Chem Soc Rev 39:1780–1804

    CAS  Google Scholar 

  26. Dupont J (2004) J Braz Chem Soc 15:341–350

    CAS  Google Scholar 

  27. Neouze M-A (2010) J Mater Chem 20:9593–9607

    CAS  Google Scholar 

  28. Consorti CS, Suarez PAZ, de Souza RF, Burrow RA, Farrar DH, Lough AJ, Loh W, da Silva LHM, Dupont J (2005) J Phys Chem B 109:4341–4349

    CAS  Google Scholar 

  29. Dupont J, Suarez PAZ, de Souza RF, Burrow RA, Kintzinger J-P (2000) Chem Eur J 6:2377–2381

    CAS  Google Scholar 

  30. Vollmer C, Janiak C (2011) Coord Chem Rev 255:2039–2057

    CAS  Google Scholar 

  31. Janiak C (2013) Z Naturforsch B 68:1056–1089

    Google Scholar 

  32. Weingärtner H (2008) Angew Chem Int Ed 47:654–670

    Google Scholar 

  33. Xiao D, Rajian JR, Cady A, Li S, Bartsch RA, Quitevis EL (2007) J Phys Chem B 111:4669–4677

    CAS  Google Scholar 

  34. Kuwabata S, Tsuda T, Torimoto T (2010) J Phys Chem Lett 1:3177–3188

    CAS  Google Scholar 

  35. Wasserscheid P, Keim W (2000) Angew Chem Int Ed 39:3772–3789

    CAS  Google Scholar 

  36. Krossing I, Slattery JM, Daguenet C, Dyson PJ, Oleinikova A, Weingärtner H (2006) J Am Chem Soc 128:13427–13434

    CAS  Google Scholar 

  37. Zhang H, Cui H (2009) Langmuir 25:2604–2612

    CAS  Google Scholar 

  38. Itoh H, Naka K, Chujo Y (2004) J Am Chem Soc 126:3026–3027

    CAS  Google Scholar 

  39. Kim K-S, Demberelnyamba D, Lee H (2004) Langmuir 20:556–560

    CAS  Google Scholar 

  40. Gao S, Zhang H, Wang X, Mai W, Peng C, Ge L (2005) Nanotechnology 16:1234–1237

    CAS  Google Scholar 

  41. Schrekker HS, Gelesky MA, Stracke MP, Schrekker CML, Machado G, Teixeira SR, Rubim JC, Dupont J (2007) J Colloid Interface Sci 316:189–195

    CAS  Google Scholar 

  42. Marcilla R, Mecerreyes D, Odriozola I, Pomposo JA, Rodriguez J, Zalakain I, Mondragon I (2007) Nano 2:169–173

    CAS  Google Scholar 

  43. Plechkova NV, Seddon KR (2008) Chem Soc Rev 37:123–150

    CAS  Google Scholar 

  44. Welton T (1999) Chem Rev 99:2071–2084

    CAS  Google Scholar 

  45. Feldmann C (2013) Z Naturforsch 68b 1057

    Google Scholar 

  46. Hallett JP, Welton T (2011) Chem Rev 111:3508–3576

    CAS  Google Scholar 

  47. Torimoto T, Tsuda T, Okazaki K, Kuwabata S (2010) Adv Mater 22:1196–1221

    CAS  Google Scholar 

  48. Janiak C (2013) Z Naturforsch 68b:1059–1089

    Google Scholar 

  49. Freudenmann D, Wolf S, Wolff M, Feldmann C (2011) Angew Chem Int Ed 50:11050–11060

    CAS  Google Scholar 

  50. Ahmed E, Breternitz J, Groh MF, Ruck M (2012) CrystEngComm 14:4874–4885

    CAS  Google Scholar 

  51. Ahmed E, Ruck M (2011) Dalton Trans 40:9347–9357

    CAS  Google Scholar 

  52. Groh MF, Müller U, Ahmed E, Rothenberger A, Ruck M (2013) Z Naturforsch 68b:1108–1122

    Google Scholar 

  53. Morris RE (2009) Chem Commun 2990–2998

    Google Scholar 

  54. Parnham ER, Morris RE (2007) Acc Chem Res 40:1005–1013

    CAS  Google Scholar 

  55. Cooper ER, Andrews CD, Wheatley PS, Webb PB, Wormald P, Morris RE (2004) Nature 430:1012–1016

    CAS  Google Scholar 

  56. Rao CNR, Matte HSSR, Voggu R, Govindaraj A (2012) Dalton Trans 41:5089–5120

    CAS  Google Scholar 

  57. Lin Y, Dehnen S (2011) Inorg Chem 50:7913–7915

    CAS  Google Scholar 

  58. Lodge P (2008) Science 321:50

    CAS  Google Scholar 

  59. Verwey EJW, Overbeek JTG (1999) Theory of the stability of lyophobic colloids. Dover Publications Mineola, New York, pp 1–218

    Google Scholar 

  60. Redel E, Krämer J, Thomann R, Janiak C (2008) GIT Labor-Fachzeitschrift, GIT Verlag, Wiley-VCH Weinheim, April issue, 400–403

    Google Scholar 

  61. Shipway AN, Katz E, Willner I (2000) ChemPhysChem 1:18–25

    CAS  Google Scholar 

  62. Cassagneau T, Fendler JH (1999) J Phys Chem B 103:1789–1793

    CAS  Google Scholar 

  63. Keating CD, Kovaleski KK, Natan MJ (1998) J Phys Chem B 102:9404–9413

    CAS  Google Scholar 

  64. Kobrak MN, Li H (2010) Phys Chem Chem Phys 12:1922–1932

    CAS  Google Scholar 

  65. Schmid G (2010) Nanoparticles, 2nd edn. Wiley-VCH, Weinheim, pp 214–238

    Google Scholar 

  66. Branco LC, Rosa NJ, Ramos JJM, Alfonso CAM (2002) Chem Eur J 8:3671–3677

    CAS  Google Scholar 

  67. Yuan X, Yan N, Katsyuba SA, Zvereva E, Kou Y, Dyson PJ (2012) Phys Chem Chem Phys 14:6026–6033

    CAS  Google Scholar 

  68. Zhao D, Fei Z, Scopelliti R, Dyson P (2004) Inorg Chem 43:2197–2205

    CAS  Google Scholar 

  69. Zhao D, Fei Z, Geldbach TJ, Scopeliti R, Dyson P (2004) J Am Chem Soc 126:15876–15882

    CAS  Google Scholar 

  70. Prechtl MHG, Scholten JD, Dupont J (2009) J Mol Catal A 313:74–78

    CAS  Google Scholar 

  71. Fonseca GS, Umpierre AP, Fichtner PFP, Teixeira SR, Dupont J (2003) Chem Eur J 9:3263–3269

    CAS  Google Scholar 

  72. Gelesky MA, Umpierre AP, Machado G, Correia RRB, Magno WC, Morais J, Ebeling G, Dupont J (2007) J Am Chem Soc 127:4588–4589

    Google Scholar 

  73. Dykeman RR, Yan N, Scopelliti R, Dyson PJ (2011) Inorg Chem 50:717–719

    CAS  Google Scholar 

  74. Dupont J, Fonseca GS, Umpierre AP, Fichtner PFP, Teixeira SR (2002) J Am Chem Soc 124:4228–4229

    CAS  Google Scholar 

  75. Fonseca GS, Machado G, Teixeira SR, Fecher GH, Morais J, Alves MCM, Dupont J (2006) J Colloid Interface Sci 301:193–204

    CAS  Google Scholar 

  76. Migowski P, Zanchet D, Machado G, Gelesky MA, Teixeira SR, Dupont J (2010) Phys Chem Chem Phys 12:6826–6833

    CAS  Google Scholar 

  77. Zhao X, Hua Y, Liang L, Liu C, Liao J, Xing W (2012) Int J Hydrogen Energy 37:51–58

    CAS  Google Scholar 

  78. Ruta M, Laurenczy G, Dyson PJ, Kiwi-Minsker L (2008) J Phys Chem C 112:17814–17819

    CAS  Google Scholar 

  79. Deshmukh RR, Rajagopal R, Srinivasan KV (2001) Chem Commun 1544–1545

    Google Scholar 

  80. Prechtl MHG, Scholten JD, Dupont J (2010) Molecules 15:3441–3461

    CAS  Google Scholar 

  81. Anderson K, Fernández SC, Hardacre C, Marr PC (2004) Inorg Chem Commun 7:73–76

    CAS  Google Scholar 

  82. Caló V, Nacci A, Monopoli A, Laera S, Cioffi N (2003) J Org Chem 68:2929–2933

    Google Scholar 

  83. Caló V, Nacci A, Monopoli A, Detomaso A, Iliade P (2003) Organometallics 22:4193–4197

    Google Scholar 

  84. Hassine F, Pucheault M, Vaultier M (2011) C R Chimie 14:671–679

    CAS  Google Scholar 

  85. Venkatesan R, Prechtl MHG, Scholten JD, Pezzi RP, Machado G, Dupont J (2011) J Mater Chem 21:3030–3036

    CAS  Google Scholar 

  86. Planellas M, Pleixats R, Shafir A (2012) Adv Synth Catal 354:651–662

    CAS  Google Scholar 

  87. Scheeren CW, Domingos JB, Machado G, Dupont J (2008) J Phys Chem C 112:16463–16469

    CAS  Google Scholar 

  88. Scheeren CW, Machado G, Dupont J, Fichtner PFP, Texeira SR (2003) Inorg Chem 42:4738–4742

    CAS  Google Scholar 

  89. Marquardt D, Barthel J, Braun M, Ganter C, Janiak C (2012) CrystEngComm 14:7607–7615

    CAS  Google Scholar 

  90. Raut D, Wankhede K, Vaidya V, Bhilare S, Darwatkar N, Deorukhkar A, Trivedi G, Salunkhe M (2009) Catal Commun 10:1240–1243

    CAS  Google Scholar 

  91. Gutel T, Garcia-Anton J, Pelzer K, Philippot K, Santini CC, Chauvin Y, Chaudret B, Basset J-M (2007) J Mater Chem 17:3290–3292

    CAS  Google Scholar 

  92. Setua P, Pramanik R, Sarkar S, Ghatak C, Rao VG, Sarkar N, Das SK (2011) J Mol Liq 162:33–37

    CAS  Google Scholar 

  93. Lazarus LL, Riche CT, Marin BC, Gupta M, Malmstadt N, Brutchey RL (2012) ACS Appl Mater Interfaces 4:3077–3083

    CAS  Google Scholar 

  94. Bhatt AI, Mechler A, Martin LL, Bond AM (2007) J Mater Chem 17:2241–2250

    CAS  Google Scholar 

  95. Dai T, Ge L, Guo R (2009) J Mater Res 24:333–341

    CAS  Google Scholar 

  96. Ryu HR, Sanchez L, Keul HA, Raj A, Bockstaller MR (2008) Angew Chem Int Ed 47:7639–7643

    CAS  Google Scholar 

  97. Obliosca JM, Harvey I, Arellano J, Huang MH, Arco SD (2010) Mater Lett 64:1109–1112

    CAS  Google Scholar 

  98. Bai X, Li X, Zheng L (2010) Langmuir 26:12209–12214

    CAS  Google Scholar 

  99. Casal-Dujat L, Rodrigues M, Yagüe A, Calpena AC, Amabilino DB, González-Linares J, Borras M, Pérez-García L (2012) Langmuir 28:2368–2381

    CAS  Google Scholar 

  100. Lazarus LL, Yang AS-J, Chu S, Brutchey RL, Malmstadt N (2010) Lab Chip 10:3377–3379

    CAS  Google Scholar 

  101. Dash P, Miller SM, Scott RWJ (2010) J Mol Catal A Chem 329:86–95

    CAS  Google Scholar 

  102. Safavi A, Zeinali S (2010) Colloids Surfaces A Physicochem Eng Aspects 362:121–126

    CAS  Google Scholar 

  103. Li Z, Taubert A (2009) Molecules 14:4682–4688

    CAS  Google Scholar 

  104. Li Z, Friedrich A, Taubert A (2008) J Mater Chem 18:1008–1014

    CAS  Google Scholar 

  105. Khare V, Li Z, Mantion A, Ayi AA, Sonkaria S, Voelkl A, Thünemann AF, Taubert A (2010) J Mater Chem 20:1332–1339

    CAS  Google Scholar 

  106. Redel E, Walter M, Thomann R, Vollmer C, Hussein L, Scherer H, Krüger M, Janiak C (2009) Chem Eur J 15:10047–10059

    CAS  Google Scholar 

  107. Huang W, Chen S, Liu Y, Fu H, Wu G (2011) Nanotechnology 22:025602

    Google Scholar 

  108. Park H, Kim J-S, Choi BG, Jo SM, Kim DY, Hong WH, Jang S-Y (2010) Carbon 48:1325–1330

    CAS  Google Scholar 

  109. Redel E, Walter M, Thomann R, Hussein L, Krüger M, Janiak C (2010) Chem Commun 46:1159–1161

    CAS  Google Scholar 

  110. Dinda E, Rashid MH, Biswas M, Mandal TK (2010) Langmuir 26:17568–17580

    CAS  Google Scholar 

  111. Marquardt D, Xie Z, Taubert A, Thomann R, Janiak C (2011) Dalton Trans 40:8290–8293

    CAS  Google Scholar 

  112. Taubert A (2010) Top Curr Chem 290:127–159

    Google Scholar 

  113. Liu D-P, Li G-D, Su Y, Chen J-S (2006) Angew Chem Int Ed 45:7370–7373

    CAS  Google Scholar 

  114. Taubert A, Li Z (2007) Dalton Trans 723–727

    Google Scholar 

  115. Redel E, Thomann R, Janiak C (2008) Inorg Chem 47:14–16

    CAS  Google Scholar 

  116. Ott LS, Finke RG (2006) Inorg Chem 45:8382–8393

    Google Scholar 

  117. Vollmer C, Redel E, Abu-Shandi K, Thomann R, Manyar H, Hardacre C, Janiak C (2010) Chem Eur J 16:3849–3858

    CAS  Google Scholar 

  118. Migowski P, Machado G, Teixeira SR, Alves MCM, Morais J, Traverse A, Dupont J (2007) Phys Chem Chem Phys 9:4814–4821

    CAS  Google Scholar 

  119. Zhu JM, Shen YH, Xie AJ, Qiu LG, Zhang Q, Zhang XY (2007) J Phys Chem C 111:7629–7633

    CAS  Google Scholar 

  120. Firestone MA, Dietz ML, Seifert S, Trasobares S, Miller DJ, Zaluzec NJ (2005) Small 1:754–760

    CAS  Google Scholar 

  121. Peppler K, Polleth M, Meiss S, Rohnke M, Janek J (2006) Z Phys Chem 220:1507–1527

    CAS  Google Scholar 

  122. Safavi A, Maleki N, Tajabadi F, Farjami E (2007) Electrochem Commun 9:1963–1968

    CAS  Google Scholar 

  123. Kim K, Lang C, Kohl PA (2005) J Electrochem Soc 152:E9

    CAS  Google Scholar 

  124. Redel E, Krämer J, Thomann R, Janiak C (2009) J Organomet Chem 694:1069–1075

    CAS  Google Scholar 

  125. Redel E, Thomann R, Janiak C (2008) Chem Commun 1789–1791

    Google Scholar 

  126. Salas G, Podgorsek A, Campbell PS, Santini CC, Pádua AAH, Costa Gomes MF, Philippot K, Chaudret B, Turmine M (2011) Phys Chem Chem Phys 13:13527–13536

    CAS  Google Scholar 

  127. Antonietti M, Kuang D, Smarly B, Zhou Y (2004) Angew Chem Int Ed 43:4988–4992

    CAS  Google Scholar 

  128. Scholten JD, Ebeling G, Dupont J (2007) Dalton Trans 5554–5560

    Google Scholar 

  129. Zhao L, Zhang C, Zhuo L, Zhang Y, Ying JY (2008) J Am Chem Soc 130:12586–12587

    CAS  Google Scholar 

  130. Guo S, Wang E (2007) Anal Chim Acta 598:181–192

    CAS  Google Scholar 

  131. Turkevich J, Stevenson PC, Hillier J (1951) Discuss Faraday Soc 11:55–75

    Google Scholar 

  132. Ryan TA, Ryan C, Seddon EA, Seddon KR (1996) Phosgene and related carbonyl halides, monograph 24. In: Clark RJH (ed) Topics in inorganic and general chemistry. Elsevier, Amsterdam, p 242

    Google Scholar 

  133. Mertens SFL, Vollmer C, Held A, Aguirre MH, Walter M, Janiak C, Wandlowski T (2011) Angew Chem Int Ed 50:9735–9738

    CAS  Google Scholar 

  134. Corma A, Domínguez I, Ródenas T, Sabater MJ (2008) J Catal 259:26–35

    CAS  Google Scholar 

  135. Miao S, Liu Z, Zhang Z, Han B, Miao Z, Ding K, An G (2007) J Phys Chem C 111:2185–2190

    CAS  Google Scholar 

  136. Dash P, Scott RWJ (2011) Mater Lett 65:7–9

    CAS  Google Scholar 

  137. Marquardt D, Beckert F, Pennetreau F, Tölle F, Mülhaupt R, Riant O, Hermans S, Bartel J, Janiak C (2014) Carbon 66:285–294

    CAS  Google Scholar 

  138. Harada M, Kimura Y, Saijo K, Ogawa T, Isoda S (2009) J Colloid Interface Sci 339:373–381

    CAS  Google Scholar 

  139. Wang Z, Zhang Q, Kuehner D, Xu X, Ivaska A, Niu L (2008) Carbon 46:1687–1692

    CAS  Google Scholar 

  140. Endres F (2002) ChemPhysChem 3:144–154

    CAS  Google Scholar 

  141. Endres F, MacFarlane D, Abbott A (2008) Electrodeposition from ionic liquids. Wiley-VCH, Weinheim

    Google Scholar 

  142. Erb U (1994) US patent US 5,352,266

    Google Scholar 

  143. Natter H, Krajewski T, Hempelmann R (1996) Ber Bunsenges Phys Chem 100:55–64

    CAS  Google Scholar 

  144. Natter H, Hempelmann R (1996) J Phys Chem B 100:19525

    CAS  Google Scholar 

  145. Natter H, Schmelzer M, Löffler M-S, Krill CE, Fitch A, Hempelmann R (2000) J Phys Chem B 104:2467–2476

    CAS  Google Scholar 

  146. Przenioslo R, Wagner J, Natter H, Hempelmann R, Wagner W (2001) J Alloys Compounds 328:259–263

    CAS  Google Scholar 

  147. Natter H, Schmelzer M, Hempelmann R (1998) J Mater Res 13:1186–1197

    CAS  Google Scholar 

  148. Natter H, Bukowski M, Hempelmann R, Zein El Abedin S, Moustafa EM, Endres F (2006) Z Phys Chem 220:1275–1291

    CAS  Google Scholar 

  149. Cha J-H, Kim K-S, Choi S, Yeon S-H, Lee H, Lee C-S, Shim J-J (2007) Korean J Chem Eng 24:1089–1094

    CAS  Google Scholar 

  150. Yu L, Sun H, He J, Wang D, Jin X, Hu X, Chen GZ (2007) Electrochem Commun 9:1374–1381

    CAS  Google Scholar 

  151. Zein El Abedin S, Endres F (2009) Electrochim Acta 54:5673–5677

    CAS  Google Scholar 

  152. Roy P, Lynch R, Schmuki P (2009) Electrochem Commun 11:1567–1570

    CAS  Google Scholar 

  153. Wei D, Baral JK, Österbacka R, Ivaska A (2008) J Mater Chem 18:1853–1857

    CAS  Google Scholar 

  154. Fu C, Kuang Y, Huang Z, Wang X, Du N, Chen J, Zhou H (2010) Chem Phys Lett 499:250–253

    CAS  Google Scholar 

  155. Kareem TA, Kaliani AA (2012) Ionics 18:315–327

    Google Scholar 

  156. Suzuki T, Okazaki K-I, Suzuki S, Shibayama T, Kuwabata S, Torimoto T (2010) Chem Mater 22:5209–5215

    CAS  Google Scholar 

  157. Tsuda T, Yoshii K, Torimoto T, Kuwabata S (2010) J Power Sources 195:5980–5985

    CAS  Google Scholar 

  158. Hatakeyama Y, Takahashi S, Nishikawa K (2010) J Phys Chem C 114:11098–11102

    CAS  Google Scholar 

  159. Kameyama T, Ohno Y, Kurimoto T, Okazaki K-I, Uematsu T, Kuwabata S, Torimoto T (2010) Phys Chem Chem Phys 12:1804–1811

    CAS  Google Scholar 

  160. Wender H, de Oliveira LF, Migowski P, Feil AF, Lissner E, Prechtl MHG, Teixeira SR, Dupont J (2010) J Phys Chem C 114:11764–11768

    CAS  Google Scholar 

  161. Chen Q, Kaneko T, Hatakeyama R (2011) Curr Appl Phys 11:S63–S66

    Google Scholar 

  162. Kaneko T, Baba K, Hatakeyama R (2009) J Appl Phys 105:103306-1–103306-5

    Google Scholar 

  163. Xie Y-B, Liu C-J (2008) Plasma Processes Polym 5:239–245

    CAS  Google Scholar 

  164. Zein El Abedin S, Pölleth M, Meiss SA, Janek J, Endres F (2007) Green Chem 9:549–553

    Google Scholar 

  165. Brettholle M, Höfft O, Klarhöfer L, Mathes S, Maus-Friedrichs W, Zein El Abedin S, Krischok S, Janek J, Endres F (2010) Phys Chem Chem Phys 12:1750–1755

    CAS  Google Scholar 

  166. Meiss SA, Rohnke M, Kienle L, Zein El Abedin S, Endres F, Janek J (2007) ChemPhysChem 8:50–53

    CAS  Google Scholar 

  167. He P, Liu H, Li Z, Liu Y, Xu X, Li J (2004) Langmuir 20:10260–10267

    CAS  Google Scholar 

  168. Wei Z, Liu C-J (2011) Mater Lett 65:353–355

    CAS  Google Scholar 

  169. Aal AA, Al-Salman R, Al-Zoubi M, Borissenko N, Endres F, Höfft O, Prowald A, Zein El Abedin S (2011) Electrochim Acta 56:10295–10305

    Google Scholar 

  170. Richter K, Birkner A, Mudring A-V (2010) Angew Chem Int Ed 49:2431–2435

    CAS  Google Scholar 

  171. Tsuda T, Seino S, Kuwabata S (2009) Chem Commun 6792–6794

    Google Scholar 

  172. Imanishi A, Tamura M, Kuwabata S (2009) Chem Commun 1775–1777

    Google Scholar 

  173. Kerfoot DGE, Nickel X, Wildermuth E, Stark H, Friedrich G, Ebenhöch FL, Kühborth B, Silver J, Rituper R (2008) Iron compounds. In: Ullmann’s encyclopaedia of industrial chemistry, 5th edn. Wiley-VCH, Weinheim

    Google Scholar 

  174. Hyeon T (2003) Chem Commun 927–934

    Google Scholar 

  175. Marquardt D, Vollmer C, Thomann R, Steurer P, Mülhaupt R, Redel E, Janiak C (2011) Carbon 49:1326–1332

    CAS  Google Scholar 

  176. Silva DO, Scholten JD, Gelesky MA, Teixeira SR, Dos Santos ACB, Souza-Aguiar EF, Dupont J (2008) ChemSusChem 1:291–294

    CAS  Google Scholar 

  177. Scariot M, Silva DO, Scholten JD, Machado G, Teixeira SR, Novak MA, Ebeling G, Dupont J (2008) Angew Chem Int Ed 47:9075–9078

    CAS  Google Scholar 

  178. Vollmer C, Schröder M, Thomann Y, Thomann R, Janiak C (2012) Appl Catal A 425–426:178–183

    Google Scholar 

  179. Bogdal D (2006) Microwave-assisted organic synthesis. Elsevier, New York, pp 47–189

    Google Scholar 

  180. Buchachenko AL, Frankevich EL (1993) Chemical generation and reception of radio- and microwaves. Wiley-VCH, Weinheim, pp 41–56

    Google Scholar 

  181. Ahluwulia VK (2008) Alternative energy processes in chemical synthesis. Alpha Science International Ltd, Oxford

    Google Scholar 

  182. Berlan J, Giboreau P, Lefeuvre S, Marchand C (1991) Tetrahedron Lett 32:2363–2366

    CAS  Google Scholar 

  183. Langa F, de la Cruz P, de la Hoz A, Diaz-Ortiz A, Diez-Barra E (1997) Contemp Org Synth 4:373–386

    CAS  Google Scholar 

  184. Perreux L, Loupy A (2001) Tetrahedron 57:9199–9233

    CAS  Google Scholar 

  185. Stadler A, Kappe CO (2000) J Chem Soc Perkin Trans 2:1363–1368

    Google Scholar 

  186. Stadler A, Kappe CO (2001) Eur J Org Chem 919–924

    Google Scholar 

  187. Silveira ET, Umpierre AP, Rossi LM, Machado G, Morais J, Soares GV, Baumvol IJR, Teixeira SR, Fichtner RFP, Dupont J (2004) Chem Eur J 10:3734–3740

    CAS  Google Scholar 

  188. Gutel T, Santini CC, Philippot K, Padua A, Pelzer K, Chaudret B, Chauvin Y, Basset J-M (2009) J Mater Chem 19:3624–3631

    CAS  Google Scholar 

  189. Schütte K, Meyer H, Gemel C, Barthel J, Fischer RA, Janiak C (2014) Nanoscale in press. doi:10.1039/C3NR05780A

  190. Langford JI, Wilson AJC (1978) J Appl Crystallogr 11:102–113

    CAS  Google Scholar 

  191. Campbell PS, Santini CC, Bouchu D, Fenet B, Philippot K, Chaudret B, Pádua AAH, Chauvin Y (2010) Phys Chem Chem Phys 12:4217–4223

    CAS  Google Scholar 

  192. Salas G, Santini CC, Philippot K, Collière V, Chaudret B, Fenet B, Fazzini PF (2011) Dalton Trans 40:4660–4668

    CAS  Google Scholar 

  193. Schütte K, Doddi A, Kroll C, Meyer H, Wiktor C, Gemel C, van Tendeloo G, Fischer RA, Janiak C (2014) Nanoscale submitted

    Google Scholar 

  194. Sawant AD, Raut DG, Darvatkar NB, Salunkhe MM (2011) Green Chem Lett Rev 4:41–54

    CAS  Google Scholar 

  195. Sheldon RA (2008) Chem Commun 3352–3365

    Google Scholar 

  196. Wasserscheid P, Welton T (2007) Ionic liquid in synthesis, vol 1. Wiley-VCH, Weinheim, pp 325–350

    Google Scholar 

  197. van Doorslaer C, Schellekens Y, Mertens P, Binnemanns K, De Vos D (2010) Phys Chem Chem Phys 12:1741–1749

    Google Scholar 

  198. Astruc D (2007) Nanoparticles and catalysis. Wiley-VCH, New York

    Google Scholar 

  199. Dupont J, de Souza RF, Suarez PAZ (2002) Chem Rev 102:3667–3692

    CAS  Google Scholar 

Download references

Acknowledgment

Our work was supported by the Deutsche Forschungsgemeinschaft through grant Ja466/17-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Janiak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Janiak, C. (2013). Metal Nanoparticle Synthesis in Ionic Liquids. In: Dupont, J., Kollár, L. (eds) Ionic Liquids (ILs) in Organometallic Catalysis. Topics in Organometallic Chemistry, vol 51. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3418_2013_70

Download citation

Publish with us

Policies and ethics