Skip to main content

Acid Catalysis in Organic Synthesis

  • Chapter
  • First Online:
Book cover Inventing Reactions

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 44))

Abstract

New reagents and catalysts have unlimited potential for the future of organic synthesis. We have been interested in Lewis and Brønsted acid catalysis for a number of years. In this chapter, I am going to review on several of these acids and related catalysts from the conceptual aspect of their molecular design and engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yamamoto H, Nozaki H (1978) Selective reactions with organoaluminum compounds. Angew Chem Int Ed Engl 17:169

    Article  Google Scholar 

  2. Matuoka K, Yamamoto H (1985) Selective reactions using organoaluminum reagents. Angew Chem Int Ed Engl 24:668

    Article  Google Scholar 

  3. Kitagawa Y, Hashimoto S, Iemura S, Yamamoto H, Nozaki H (1976) Novel nonenzymic heterolysis of an allyl phosphate ester by organoaluminum reagents. J Am Chem Soc 98:5030

    Article  CAS  Google Scholar 

  4. Yasuda A, Tanaka S, Oshima K, Yamamoto H, Nozaki H (1974) Organoaluminum reagents of type R1R2NA1Et2 which allow regiospecific isomerization of epoxides to allylic alcohols. J Am Chem Soc 96:6513–6514

    Article  CAS  Google Scholar 

  5. Kitagawa Y, Itoh A, Hashimoto S, Yamamoto H, Nozaki H (1977) Total synthesis of humulene. A stereoselective approach. J Am Chem Soc 99:3864

    Article  CAS  Google Scholar 

  6. Yamamoto H, Yanagisawa A, Ishihara K, Saito S (1998) Designer Lewis acids for selective organic synthesis. Pure Appl Chem 70:1507

    Article  CAS  Google Scholar 

  7. Maruoka K, Nonoshita K, Banno H, Yamamoto H (1988) Unprecedented stereochemical control in the Claisen rearrangement of allyl vinyl ethers using organoaluminum reagents. J Am Chem Soc 110:7922

    Article  CAS  Google Scholar 

  8. Nonoshita K, Banno H, Maruoka K, Yamamoto H (1990) Organoaluminum-promoted Claisen rearrangement of allyl vinyl ethers. J Am Chem Soc 112:316

    Article  CAS  Google Scholar 

  9. Maruoka K, Ito M, Yamamoto H (1995) Unprecedented nucleophilic addition of organolithiums to aromatic aldehydes and ketones by complexation with aluminum tris(2,6-diphenylphenoxide). J Am Chem Soc 117:9091

    Article  CAS  Google Scholar 

  10. Saito S, Sone T, Murase M, Yamamoto H (2000) Aluminum tris(2,6-diphenylphenoxide)-ArCOCl complex for nucleophilic dearomatic functionalization. J Am Chem Soc 122:10216

    Article  CAS  Google Scholar 

  11. Maruoka K, Itoh T, Yamamoto H (1985) Methylaluminum bis(2,6-di-tert-butyl-4-alkylphenoxide). A new reagent for obtaining unusual equatorial and anti-Cram selectivity in carbonyl alkylation. J Am Chem Soc 107:4573

    Article  CAS  Google Scholar 

  12. Maruoka K, Itoh T, Sakurai M, Nonoshita K, Yamamoto H (1988) Amphiphilic reactions by means of exceptionally bulky organoaluminum reagents. Rational approach for obtaining unusual equatorial, anti-Cram, and 1,4 selectivity in carbonyl alkylation. J Am Chem Soc 110:3588

    Article  CAS  Google Scholar 

  13. Yamamoto H, Maruoka K, Furuta K (1989) In: Schinzer D (ed) Selectivities in Lewis acid promoted reactions. Nato ACI Series, Kluwer Academic Publishers

    Google Scholar 

  14. Haruta R, Ishiguro M, Ikeda N, Yamamoto H (1982) Chiral allenylboronic esters: a practical reagent for enantioselective carbon–carbon bond formation. J Am Chem Soc 104:7667–7669

    Article  CAS  Google Scholar 

  15. Sakane S, Maruoka K, Yamamoto H (1985) Asymmetric cyclization of unsaturated aldehydes catalyzed by a chiral Lewis acid. Tetrahedron Lett 26:5535–5538

    Article  CAS  Google Scholar 

  16. Maruoka K, Itoh T, Shirasaka T, Yamamoto H (1988) Asymmetric hetero-Diels-Alder reaction catalyzed by chiral organoaluminum reagent. J Am Chem Soc 110:310–312

    Article  CAS  Google Scholar 

  17. Yamamoto H (1999) Lewis acid reagents: a practical approach. Oxford University Press, Oxford

    Google Scholar 

  18. Yamamoto H (2000) Lewis acids in organic synthesis. Wiley-VCH, Weinheim

    Book  Google Scholar 

  19. Furuta K, Miwa Y, Iwanaga K, Yamamoto H (1988) Acyloxyborane: an activating device for carboxylic acids. J Am Chem Soc 110:6254–6255

    Article  CAS  Google Scholar 

  20. Futatsugi K, Yamamoto H (2005) Studies on the mechanism of sesquiterpene biosynthesis. humulene-germacrene rearrangement. Angew Chem Int Ed 44:1924–1942

    Article  Google Scholar 

  21. Negishi E (1999) Principle of activation of electrophiles by electrophiles through dimeric association – two are better than one. Chem Eur J 5:411–420

    Article  CAS  Google Scholar 

  22. Ishihara K, Yamamoto H (1994) Brønsted acid assisted chiral Lewis acid (BLA) catalyst for asymmetric Diels-Alder reaction. J Am Chem Soc 116:1561–1562

    Article  CAS  Google Scholar 

  23. Oishi M, Aratake S, Yamamoto H (1998) Remarkable enhancement of catalyst activity of trialkylsilyl sulfonates on the Mukaiyama aldol reaction: a new approach using bulky organoaluminum cocatalysts. J Am Chem Soc 120:8271

    Article  CAS  Google Scholar 

  24. Futatsugi K, Yamamoto H (2005) Oxazaborolidine-derived Lewis acid assisted Lewis acid as a moisture-tolerant catalyst for enantioselective Diels–Alder reactions. Angew Chem Int Ed Engl 44:1484–1487

    Article  CAS  Google Scholar 

  25. Ishibashi H, Ishihara K, Yamamoto H (2004) A new artificial cyclase for polyprenoids: enantioselective total synthesis of (−)-chromazonarol, (+)-8- epi-puupehedione, and (−)-11´-deoxytaondiol methyl ether. J Am Chem Soc 126:11122–11123

    Article  CAS  Google Scholar 

  26. Momiyama N, Yamamoto H (2005) Brønsted acid catalysis of achiral enamine for regio- and enantioselective nitroso aldol synthesis. J Am Chem Soc 127:1080–1081

    Article  CAS  Google Scholar 

  27. Gillespie RJ, Peel TE (1971) Superacid systems. Adv Phys Org Chem 9:1–5

    Article  CAS  Google Scholar 

  28. Ishihara K, Hiraiwa Y, Yamamoto H (2001) A high yield procedure for the Me3SiNTf2-induced carbon-carbon bond forming reactions of silyl nucleophiles with carbonyl compounds: the importance of addition order and solvent effects. Synlett 12:1851–1854

    Article  Google Scholar 

  29. Mathieu B, Ghosez L (1997) N-trimethylsilyl-bis(trifluoromethanesulfonyl)imide: a better carbonyl activator than trimethylsilyl triflate. Tetrahedron Lett 38:5497–5500

    Article  CAS  Google Scholar 

  30. Ishihara K, Hasegawa A, Yamamoto H (2001) Polystyrene-bound Tetrafluorophenylbis(triflyl) – methane as an Organic-Solvent-Swellable and Strong Brønsted acid Catalyst. Angew Chem Int Ed Engl 40:4077–4079

    Article  CAS  Google Scholar 

  31. Ishihara K, Hasegawa A, Yamamoto H (2002) Single-pass reaction column system with super Brønsted acid-loaded resin. Synlett 8:1296–1298

    Google Scholar 

  32. Ishihara K, Hasegawa A, Yamamoto H (2002) A fluorous super Brønsted acid catalyst: application to fluorous catalysis with fluorous solvents. Synlett 8:1299–1301

    Google Scholar 

  33. Hasegawa A, Ishikawa T, Ishihara K, Yamamoto H (2005) Facile synthesis of aryl- and alkyl-bis(trifluoromethylsulfonyl)methanes. Bull Chem Soc Jpn 78:1401–1410

    Article  CAS  Google Scholar 

  34. Boxer MB, Yamamoto H (2006) Tris(trimethylsilyl)silyl-governed aldehyde cross-aldol cascade reaction. J Am Chem Soc 128:48–49

    Article  CAS  Google Scholar 

  35. Boxer MB, Yamamoto H (2007) “Super Silyl” group for diastereoselective sequential reactions: access to complex chiral architecture in one pot. J Am Chem Soc 129:2762–2763

    Article  CAS  Google Scholar 

  36. Bock H, Meuret J, Baur R, Ruppert K (1993) 1,4-Di[tris(trimethylsilyl)sily]benzene: synthesis, structural analogy, photoelectron spectrum and ESR/ENDOR characterization of its radical anion. J Organomet Chem 446:113–122

    Article  CAS  Google Scholar 

  37. Frey J, Schottland E, Rappoport Z, Bravo-Zhivotovskii D, Nakash M, Botoshansky M, Kaftory M, Apeloig Y (1994) The effective ‘size’ of the tris(trimethylsilyl)silyl group in several molecular environments. J Chem Soc, Perkin Trans 2, 2555–2562

    Google Scholar 

  38. Boxer M, Yamamoto H (2008) Ketone super silyl enol ethers in sequential reactions: diastereoselective generation of tertiary carbinols in one pot. J Am Chem Soc 130:1580–1582

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisashi Yamamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yamamoto, H. (2012). Acid Catalysis in Organic Synthesis. In: Gooßen, L. (eds) Inventing Reactions. Topics in Organometallic Chemistry, vol 44. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3418_2012_51

Download citation

Publish with us

Policies and ethics