Skip to main content

Transition-Metal-Catalyzed S–H and Se–H Bonds Addition to Unsaturated Molecules

  • Chapter
  • First Online:
Hydrofunctionalization

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 43))

Abstract

This chapter deals with the transition-metal-catalyzed hydrothiolation and hydroselenation of alkynes and allenes and related unsaturated compounds with thiols and selenols. In these reactions, the regio- and/or stereoselectivities of the addition products can be controlled by switching the transition metal catalysts. Metal sulfides and selenides (RE-ML n , E = S, Se, M = Ni, Pd, Rh, Zr, Sm, etc.) play an important role as key catalyst species in these hydrothiolation and hydroselenation. The introduction of carbon monoxide into these hydrothiolation and hydroselenation systems leads to novel carbonylation with simultaneous addition of thio and seleno groups to unsaturated bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ac:

Acetyl

acac:

Acetylacetonate

An:

Actinide

Ar:

Aryl

t-Bu:

tert-butyl

cat:

Catalyst

c-Hex:

Cyclohexyl

coe:

Cyclooctene

cod:

1,5-cyclooctadiene

Cp:

Cyclopentadienyl

Cp*:

Pentamethylcyclopentadienyl

DIOP:

O-2,3-isopropylidene-2,3-dihydroxy-1,4-bis(diphenylphosphino)butane

dppp:

1,3-bis(diphenylphosphino)propane

dppf:

1,1’-bis(diphenylphosphino)ferrocene

DTBM-segphos:

5,5’-bis{di(3,5-di-t-butyl-4-methoxyphenyl)phosphino}-4,4’-bi-1,3-benzodioxole

equiv:

Equivalent

GPC:

Gel permeation chromatography

i-Pr:

Isopropyl

IMes:

N,N-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene

Ln:

Lanthanide

ML n :

Transition metal complex (M: metal L: ligand)

mol:

Mole(s)

Me:

Methyl

Ms:

Methanesulfonyl (mesyl)

NHC:

N-heterocyclic carbene ligands

Ph:

Phenyl

py:

Pyridine

R:

Organyl substituent

rt:

Room temperature

SEM:

Scanning electron microscopy

THF:

Tetrahydrofuran

TMS:

Trimethylsilyl

Tp*:

Hydrotris(3,5-dimethylpyrazolyl)borate

p-TsOH:

p-toluenesulfonic acid

References

  1. Hegedus LL, McCabe R (1984) Catalyst poisoning. Marcel Dekker, New York

    Google Scholar 

  2. Ogawa A, Sonoda N (1993) Transition-metal-catalyzed reactions of chalcogen compounds. J Synth Org Chem Jpn 51:815–825

    CAS  Google Scholar 

  3. Ogawa A, Sonoda N (1996) Highly selective addition of organic dichalcogenides to carbon-carbon unsaturated bonds. J Synth Org Chem Jpn 54:894–905

    CAS  Google Scholar 

  4. Han LB, Tanaka M (1999) Transition metal-catalysed addition reactions of H-heteroatom and inter-heteroatom bonds to carbon-carbon unsaturated linkages via oxidative additions. Chem Commun 1999:395–402

    Google Scholar 

  5. Beletskaya I, Moberg C (1999) Element-element addition to alkynes catalyzed by the group 10 metals. Chem Rev 99:3435–3461

    CAS  Google Scholar 

  6. Procter DJ (2000) The synthesis of thiols, selenols, sulfides, selenides, sulfoxides, selenoxides, sulfones and selenones. J Chem Soc Perkin Trans 1 2000:835–871

    Google Scholar 

  7. Ogawa A (2000) Activation and reactivity of group 16 inter-element linkage – Transition-metal-catalyzed reactions of thiols and selenols. J Organomet Chem 611:463–474

    CAS  Google Scholar 

  8. Kondo T, Mitsudo T (2000) Metal-catalyzed carbon-sulfur bond formation. Chem Rev 100:3205–3220

    CAS  Google Scholar 

  9. Kuniyasu H (2001) Sulfur (and related elements)-X activation. In: Togni A, Grützmacher H (eds) Catalytic heterofunctionalization. Wiley-VCH, Zürich

    Google Scholar 

  10. Kondo T (2001) Novel catalytic performance of ruthenium complexes for organic synthesis. J Synth Org Chem Jpn 59:170–184

    CAS  Google Scholar 

  11. Ogawa A (2002) Palladium-catalyzed syn-addition reactions of X-Pd bonds (X = group 15, 16, and 17 elements). In: Negishi E (ed) Handbook of organopalladium chemistry for organic synthesis, vol II. Wiley, New York

    Google Scholar 

  12. Ogawa A (2004) Selenium and tellurium in organic synthesis. In: Yamamoto H, Oshima K (eds) Main group metals in organic synthesis. Wiley-VCH, Weinheim

    Google Scholar 

  13. Beller M, Seayad J, Tillack A, Jiao H (2004) Catalytic Markovnikov and anti-Markovnikov functionalization of alkenes and alkynes: Recent developments and trends. Angew Chem Int Ed 43:3368–3398

    CAS  Google Scholar 

  14. Alonso F, Beletskaya IP, Yus M (2004) Transition-metal-catalyzed addition of heteroatom-hydrogen bonds to alkynes. Chem Rev 104:3079–3159

    CAS  Google Scholar 

  15. Beletskaya IP, Moberg C (2006) Element-element additions to unsaturated carbon-carbon bonds catalyzed by transition metal complexes. Chem Rev 106:2320–2354

    CAS  Google Scholar 

  16. Kuniyasu H, Kambe N (2006) Transition metal-catalyzed carbochalcogenation of alkynes. Chem Lett 35:1320–1325

    CAS  Google Scholar 

  17. Beletskaya IP, Ananikov VP (2007) Unusual influence of the structures of transition metal complexes on catalytic C-S and C-Se bond formation under homogeneous and heterogeneous conditions. Eur J Org Chem 2007:3431–3444

    Google Scholar 

  18. Bichler P, Love JA (2010) Organometallic approaches to carbon-sulfur bond formation. Top Organomet Chem 31:39–64

    Google Scholar 

  19. Beletskaya IP, Ananikov VP (2010) The formation of Csp 2-S and Csp 2-Se bonds by substitution and addition reactions catalyzed by transition metal complexes. In: Yudin AK (ed) Catalyzed carbon-heteroatom bond formation. Wiley-VCH, Weinheim

    Google Scholar 

  20. Ogawa A, Nomoto A, Sonoda M (2010) Creation of new organic molecules, new reactions based on heteroatom chemistry. In: Anpo M, Mizuno K (eds) Environmentally harmonious chemistry for the 21st century. Nova Science, New York

    Google Scholar 

  21. Kuniyasu H, Ogawa A, Sato K, Ryu I, Kambe N, Sonoda N (1992) The first example of transition-metal-catalyzed addition of aromatic thiols to acetylenes. J Am Chem Soc 114:5902–5903

    CAS  Google Scholar 

  22. Ugo R, La Monica G, Cenini S, Sergre A, Conti F (1971) Zerovalent platinum chemistry. Part VI. The reactions of bis- and tris-triphenylphosphineplatinum(0) with hydrogen sulphide, hydrogen selenide, sulphur, and related molecules. J Chem Soc A 1971:522–528

    Google Scholar 

  23. Keskinen AE, Senoff CV (1972) Transmission of electronic effects in trans-hydrido-(arenethiolato)bis(triphenylphosphine)platinum(II) complexes. J Organomet Chem 37:201–208

    CAS  Google Scholar 

  24. Ohtaka A, Kuniyasu H, Kinomoto M, Kurosawa H (2002) Photo-and-thiol-driven trans insertion of phenylacetylene into H-Pt bonds. J Am Chem Soc 124:14324–14325

    CAS  Google Scholar 

  25. Kuniyasu H, Takekawa K, Yamashita F, Miyafuji K, Asano S, Takai Y, Ohtaka A, Tanaka A, Sugoh K, Kurosawa H, Kambe N (2008) Insertion of alkynes into an ArS-Pt bond: Regio- and stereoselective thermal reactions, facilitation by “o-halogen effect” and photoirradiation, different alkyne preferences depending on the ancillary ligand, and application to a catalytic reaction. Organometallics 27:4788–4802

    CAS  Google Scholar 

  26. Ananikov VP, Orlov NV, Beletskaya IP, Khrustalev VN, Antipin MY, Timofeeva TV (2007) New approach for size- and shape-controlled preparation of Pd nanoparticles with organic ligands, synthesis and application in catalysis. J Am Chem Soc 129:7252–7253

    Google Scholar 

  27. Ozaki T, Nomoto A, Kamiya I, Kawakami J, Ogawa A (2011) Transition-metal-catalyzed cyanochalcogenation of alkynes with chalcogenocyanates. Bull Chem Soc Jpn 84:155–163

    Google Scholar 

  28. Ananikov VP, Malyshev DA, Beletskaya IP, Aleksandrov GG, Eremenko IL (2005) Nickel(II) chloride-catalyzed regioselective hydrothiolation of alkynes. Adv Synth Catal 347:1993–2001

    Google Scholar 

  29. Ananikov VP, Orlov NV, Beletskaya IP (2006) Efficient and convenient synthesis of β-vinyl sulfides in nickel-catalyzed regioselective addition of thiols to terminal alkynes under solvent-free conditions. Organometallics 25:1970–1977

    Google Scholar 

  30. Ananikov VP, Zalesskiy SS, Orlov NV, Beletskaya IP (2006) Nickel-catalyzed addition of benzenethiol to alkynes: formation of carbon-sulfur and carbon-carbon bonds. Russ Chem Bull Int Ed 55:2109–2113

    Google Scholar 

  31. Malyshev DA, Scott NM, Marion N, Stevens ED, Ananikov VP, Beletskaya IP, Nolan SP (2006) Homogeneous nickel catalysts for the selective transfer of a single arylthio group in the catalytic hydrothiolation of alkynes. Organometallics 25:4462–4470

    CAS  Google Scholar 

  32. Beletskaya IP, Ananikov VP (2007) Addition reactions of E-E and E-H bonds to triple bond of alkynes catalyzed by Pd, Pt, and Ni complexes (E=S, Se). Pure Appl Chem 79:1041–1056

    CAS  Google Scholar 

  33. Ananikov VP, Gayduk KA, Orlov NV, Beletskaya IP, Khrustalev VN, Antipin MY (2010) Two distinct mechanisms of alkyne insertion into the metal-sulfur bond: combined experimental and theoretical study and application in catalysis. Chem Eur J 16:2063–2071

    Google Scholar 

  34. Han LB, Zhang C, Yazawa H, Shimada S (2004) Efficient and selective nickel-catalyzed addition of H-P(O) and H-S bonds to alkynes. J Am Chem Soc 126:5080–5081

    CAS  Google Scholar 

  35. Slugovc C, Padilla-Martínez I, Sirol S, Carmona R (2001) Rhodium- and iridium-trispyrazolylborate complexes: C-H activation and coordination chemistry Coord Chem Rev 213:129–157

    CAS  Google Scholar 

  36. Cao C, Fraser LR, Love JA (2005) Rhodium-catalyzed alkyne hydrothiolation with aromatic and aliphatic thiols. J Am Chem Soc 127:17614–17615

    CAS  Google Scholar 

  37. Cao C, Wang T, Patrick BO, Love JA (2006) Orthometalation of Tp*Rh(PPh3)2: Implications for catalytic reactivity. Organometallics 25:1321–1324

    CAS  Google Scholar 

  38. Fraser LR, Bird J, Wu Q, Cao C, Patrick BO, Love JA (2007) Synthesis, structure, and hydrothiolation activity of rhodium pyrazolylborate complexes. Organometallics 26:5602–5611

    CAS  Google Scholar 

  39. Sabarre A, Love JA (2008) Synthesis of 1,1-disubstituted olefins via catalytic alkyne hydrothiolation/Kumada cross-coupling. Org Lett 10:3941–3944

    CAS  Google Scholar 

  40. Yang J, Sabarre A, Fraser LR, Patrick BO, Love JA (2009) Synthesis of 1,1-disubstituted alkyl vinyl sulfides via rhodium-catalyzed alkyne hydrothiolation: Scope and limitations. J Org Chem 74:182–187

    CAS  Google Scholar 

  41. Misumi Y, Seino H, Mizobe Y (2006) Addition of benzenethiol to terminal alkynes catalyzed by hydrotris(3,5-dimethylpyrazolyl)borate-Rh(III) bis(thiolate) complex: Mechanistic studies with characterization of the key intermediate. J Organomet Chem 691:3157–3164

    CAS  Google Scholar 

  42. McDonald JW, Corbin JL, Newton WE (1976) Catalysis by molybdenum complexes. the reaction of diazenes and acetylenes with thiophenol. Inorg Chem 15:2056–2061

    CAS  Google Scholar 

  43. Weiss CJ, Marks TJ (2010) Organozirconium complexes as catalysts for Markovnikov-selective intermolecular hydrothiolation of terminal alkynes: Scope and mechanism. J Am Chem Soc 132:10533–10546

    CAS  Google Scholar 

  44. Weiss CJ, Wobser SD, Marks TJ (2010) Lanthanide- and actinide-mediated terminal alkyne hydrothiolation for the catalytic synthesis of Markovnikov vinyl sulfide. Organometallics 29:6308–6320

    CAS  Google Scholar 

  45. Weiss CJ, Marks TJ (2010) Organo-f-element catalysts for efficient and highly selective hydroalkoxylation and hydrothiolation. Dalton Trans 2010:6576–6588

    Google Scholar 

  46. Eisen MS (2010) Catalytic C-N, C-O, and C-S bond formation promoted by organoactinide complexes. Top Organomet Chem 31:157–184

    CAS  Google Scholar 

  47. Weiss CJ, Wobser SD, Marks TJ (2009) Organoactinide-mediated hydrothiolation of terminal alkynes with aliphatic, aromatic, and benzylic thiols. J Am Chem Soc 131:2062–2063

    CAS  Google Scholar 

  48. Ogawa A, Ikeda T, Kimura K, Hirao T (1999) Highly regio- and stereocontrolled synthesis of vinyl sulfides via transition-metal-catalyzed hydrothiolation of alkynes with thiols. J Am Chem Soc 121:5108–5114

    CAS  Google Scholar 

  49. Sugoh K, Kuniyasu H, Sugae T, Ohtaka A, Takai Y, Tanaka A, Machino C, Kambe N, Kurosawa H (2001) A prototype of transition-metal-catalyzed carbothiolation of alkynes. J Am Chem Soc 123:5108–5109

    CAS  Google Scholar 

  50. Yamashita F, Kuniyasu H, Terao J, Kambe N (2006) cis-to-trans Isomerization promoted by pyridine as a crucial step for the selective preparation of trans-Pt(SAr)(Cl)(PAr’3)2. Inorg Chem 45:1399–1404

    CAS  Google Scholar 

  51. Kuniyasu H, Yamashita F, Terao J, Kambe N (2007) Definitive evidence for the insertion of terminal alkynes into arylS-Pt bonds: “o-halogen effect” in stoichiometric and catalytic reactions. Angew Chem Int Ed 46:5929–5933

    CAS  Google Scholar 

  52. Kuniyasu H, Kurosawa H (2002) Transition-metal-catalyzed carbon-heteroatom three-component cross-coupling reactions: a new concept for carbothiolation of alkynes. Chem Eur J 8:2660–2665

    CAS  Google Scholar 

  53. Yamashita F, Kuniyasu H, Terao J, Kambe N (2008) Platinum-catalyzed regio-and stereoselective arylthiolation of internal alkynes. Org Lett 10:101–104

    CAS  Google Scholar 

  54. Shoai S, Bichler P, Kang B, Buckley H, Love JA (2007) Catalytic alkyne hydrothiolation with alkanethiols using Wilkinson’s catalyst. Organometallics 26:5778–5781

    CAS  Google Scholar 

  55. Singer H, Wilkinson G (1968) Oxidative addition of hydrogen cyanide, hydrogen sulphide, and other acids to triphenylphosphine complexes of iridium(I) and rhodium(I). J Chem Soc A 1968:2516–2520

    Google Scholar 

  56. Corma A, González-Arellano C, Iglesias M, Sánchez F (2010) Efficient synthesis of vinyl and alkyl sulfides via hydrothiolation of alkynes and elecron-deficient olefins using soluble and heterogenized gold complexes catalysts. Appl Cat A: General 375:49–54

    CAS  Google Scholar 

  57. Burling S, Field LD, Messerle BA, Vuong KQ, Turner P (2003) Rhodium(I) and iridium(I) complexes with bidentate N, N and P, N ligands as catalysts for the hydrothiolation of alkynes. Dalton Trans 2003:4181–4191

    Google Scholar 

  58. Field LD, Messerle BA, Vuong KQ, Turner P (2009) Rhodium(I) and iridium(I) complexes containing bidentate phosphine-imidazolyl donor ligands as catalysts for the hydroamination and hydrothiolation of alkynes. Dalton Trans 2009:3599–3614

    Google Scholar 

  59. Kondoh A, Takami K, Yorimitsu H, Oshima K (2005) Stereoselective hydrothiolation of alkynes catalyzed by cesium base: Facile access to (Z)-1-alkenyl sulfides. J Org Chem 70:6468–6473

    CAS  Google Scholar 

  60. Ranjit S, Duan Z, Zhang P, Liu X (2010) Synthesis of vinyl sulfides by copper-catalyzed decarboxylative C-S cross-coupling. Org Lett 12:4134–4136

    CAS  Google Scholar 

  61. Wang ZL, Tang RY, Luo PS, Deng CL, Zhong P, Li JH (2008) Hydrothiolation of terminal alkynes with diaryl disulfides and diphenyl diselenide: selective synthesis of (Z)-1-alkenyl sulfides and selenides. Tetrahedron 64:10670–10675

    CAS  Google Scholar 

  62. Silva MS, Lara RG, Marczewski JM, Jacob RG, Lenardão EJ, Perin G (2008) Synthesis of vinyl sulfides via hydrothiolation of alkynes using Al2O3/KF under solvent-free conditions. Tetrahedron Lett 49:1927–1930

    CAS  Google Scholar 

  63. Nguyen VH, Nishino H, Kajikawa S, Kurosawa K (1998) Mn(III)-based reactions of alkenes and alkynes with thiols. An approach toward substituted 2,3-dihydro-1,4-oxathiins and simple route to (E)-vinyl sulfides. Tetrahedron 54:11445–11460

    CAS  Google Scholar 

  64. Yadav JS, Subba Reddy BV, Raju A, Ravindar K, Baishya G (2007) Hydrothiolation of unactivated alkynes catalyzed by indium(III) bromide. Chem Lett 36:1474–1475

    CAS  Google Scholar 

  65. Mitamura T, Daitou M, Nomoto A, Ogawa A (2011) Highly regioselective double hydrothiolation of terminal acetylenes with thiols catalyzed by palladium diacetate. Bull Chem Soc Jpn 84:413–415

    CAS  Google Scholar 

  66. Jin Z, Xu B, Hammond GB (2010) Green synthesis of vicinal dithioethers and alkenyl thioethers from the reaction of alkynes and thiols in water. Eur J Org Chem 2010:168–173

    Google Scholar 

  67. Emori E, Arai T, Sasai H, Shibasaki M (1998) A catalytic Michael addition of thiols to α, β-unsaturated carbonyl compounds: Asymmetric Michael additions and asymmetric protonations. J Am Chem Soc 120:4043–4044

    CAS  Google Scholar 

  68. Kanemasa S, Oderaotoshi Y, Wada E (1999) Asymmetric conjugate addition of thiols to a 3-(2-alkenoyl)-2-oxazolidinone catalyzed by the DBFOX/Ph aqua complex of nickel(II) perchlorate. J Am Chem Soc 121:8675–8676

    CAS  Google Scholar 

  69. Garg SK, Kumar R, Chakraborti AK (2005) Copper(II) tetrafluoroborate as a novel and highly efficient catalyst for Michael addition of mercaptans to α,β-unsaturated carbonyl compounds. Tetrahedron Lett 46:1721–1724

    CAS  Google Scholar 

  70. Weïwer M, Coulombel L, Duñach E (2006) Regioselective indium(III) trifluoromethanesulfonate-catalyzed hydrothiolation of non-activated olefins. Chem Commun 2006:332–334

    Google Scholar 

  71. Delp SA, Munro-Leighton C, Goj LA, Ramirez MA, Gunnoe TB, Petersen JL, Boyle PD (2007) Addition of S-H bonds across electron-deficient olefins catalyzed by well-defined copper(I) thiolate complexes. Inorg Chem 46:2365–2367

    CAS  Google Scholar 

  72. Munro-Leighton C, Delp SA, Alsop NM, Blue ED, Gunnoe TB (2008) Anti-Markovnikov hydroamination and hydrothiolation of electron-deficient vinylarenes catalyzed by well-defined monomeric copper(I) amido and thiolate complexes. Chem Commun 2008:111–113

    Google Scholar 

  73. Pasto DJ, Warren SE, Morrison MA (1981) Radical-chain addition of benzenethiol to allenes. Analysis of steric effects and reversibility. J Org Chem 46:2837–2841

    CAS  Google Scholar 

  74. Ogawa A, Kawakami J, Sonoda N, Hirao T (1996) Highly regioselective addition of benzenethiol to allenes catalyzed by palladium acetate. J Org Chem 61:4161–4163

    CAS  Google Scholar 

  75. Kodama S, Nomoto A, Kajitani M, Nishinaka E, Sonoda M, Ogawa A (2009) Transition-metal-catalyzed hydrothiolation of cyclohexylallene with benzenethiol or diphenyl disulfide. J Sulfur Chem 30:309–318

    CAS  Google Scholar 

  76. Schönberg A, Barakat MZ (1949) Organic sulfur compounds. Part XXXII. The action of triphenylphosphine on organic disulphides. J Chem Soc 1949:892–894

    Google Scholar 

  77. Kawamoto T, Hirabayashi S, Guo XX, Nishimura T, Hayashi T (2009) Rhodium-catalyzed asymmetric hydroalkoxylation and hydrosulfenylation of diphenylphosphinylallenes. Chem Commun 2009:3528–3530

    Google Scholar 

  78. Arisawa M, Suwa A, Fujimoto K, Yamaguchi M (2003) Transition metal-catalyzed synthesis of (E)-2-(alkylthio)alka-1,3-dienes from allenes and dialkyl disulfides with concomitant hydride transfer. Adv Synth Catal 345:560–563

    CAS  Google Scholar 

  79. Menggenbateer Narsireddy M, Ferrara G, Nishina N, Jin T, Yamamoto Y (2010) Gold-catalyzed regiospecific intermolecular hydrothiolation of allenes. Tetrahedron Lett 51:4627–4629

    CAS  Google Scholar 

  80. Morita N, Krause N (2006) The first gold-catalyzed C-S bond formation: Cycloisomerization of α-thioallenes to 2,5-dihydrothiophenes. Angew Chem Int Ed 45:1897–1899

    CAS  Google Scholar 

  81. Brouwer C, Rahaman R, He C (2007) Gold(I)-mediated hydrothiolation of conjugated olefins. Synlett 2007:1785–1789

    Google Scholar 

  82. Sonoda N, Ogawa A (1995) Benzeneselenol. In: Paquette LA (ed) Encyclopedia of reagents for organic synthesis, vol 1. Wiley, New York

    Google Scholar 

  83. Kuniyasu H, Ogawa A, Sato K, Ryu I, Sonoda N (1992) The first example of transition-metal-catalyzed hydroselenation of acetylenes. Tetrahedron Lett 33:5525–5528

    CAS  Google Scholar 

  84. Kamiya I, Nishinaka E, Ogawa A (2005) Palladium(II) acetate in pyridine as an effective catalyst for highly regioselective hydroselenation of alkynes. J Org Chem 70:696–698

    CAS  Google Scholar 

  85. Ozaki T, Kotani M, Kusano H, Nomoto A, Ogawa A (2011) Highly regioselective hydroselenation and double-bond isomerization of terminal alkynes with benzeneselenol catalyzed by bis(triphenylphosphine)palladium(II) dichloride. J Organomet Chem 696:450–455

    CAS  Google Scholar 

  86. Ogawa A, Obayashi R, Sekiguchi M, Masawaki T, Kambe N, Sonoda N (1992) Diphenyl diselenide-promoted radical addition of benzeneselenol to acetylenes. Tetrahedron Lett 33:1329–1332

    CAS  Google Scholar 

  87. Ananikov VP, Malyshev DA, Beletskaya IP (2002) Mechanism of catalytic addition of benzeneselenol to alkynes. Russ J Org Chem 38:1475–1478

    CAS  Google Scholar 

  88. Ananikov VP, Malyshev DA, Beletskaya IP, Aleksandrov GG, Eremenko IL (2003) Palladium and platinum catalyzed hydroselenation of alkynes: Se-H vs Se-Se addition to C≡C bond. J Organomet Chem 679:162–172

    CAS  Google Scholar 

  89. Ananikov VP, Kabeshov MA, Beletskaya IP, Aleksandrov GG, Eremenko IL (2003) Mechanistic study of palladium catalyzed S-S and Se-Se bonds addition to alkynes. J Organomet Chem 687:451–461

    CAS  Google Scholar 

  90. Ananikov VP, Gayduk KA, Beletskaya IP, Khrustalev VN, Antipin MY (2009) Catalyst leaching as an efficient tool for constructing new catalytic reactions: Application to the synthesis of cyclic vinyl sulfides and vinyl selenides. Eur J Inorg Chem 2009:1149–1161

    Google Scholar 

  91. Nakata N, Uchiumi R, Yoshino T, Ikeda T, Kamon H, Ishii A (2009) Reactions of 9-triptyceneselenol with palladium(0) complexes: unexpected formations of the dinuclear palladium(I) complex [{Pd(PPh3)}2(μ-SeTrip)2] and five-membered selenapalladacycle [Pd(η2(C, Se)-Trip)(dppe)]. Organometallics 28:1981–1984

    CAS  Google Scholar 

  92. Ishii A, Nakata N, Uchiumi R, Murakami K (2008) Reactions of a ditriptycyl-substituted selenoseleninate and related compounds with a platinum(0) complex: Formation of selenaplatinacycle and hydrido selenolato platinum(II) complexes. Angew Chem Int Ed 47:2661–2664

    CAS  Google Scholar 

  93. Ananikov VP, Orlov NV, Beletskaya IP (2007) Highly efficient nickel-based heterogeneous catalytic system with nanosized structural organization for selective Se-H bond addition to terminal and internal alkynes. Organometallics 26:740–750

    CAS  Google Scholar 

  94. Ananikov VP, Gayduk KA, Beletskaya IP, Khrustalev VN, Antipin MY (2008) Remarkable Ligand Effect in Ni- and Pd-catalyzed Bisthiolation and Bisselenation of terminal alkynes: Solving the problem of stereoselective dialkyldichalcogenide addition to the C≡C bond. Chem Eur J 14:2420–2434

    CAS  Google Scholar 

  95. Yamashita K, Takeda H, Kashiwabara T, Hua R, Shimada S, Tanaka M (2007) Ni-catalyzed addition reaction of allylic selenides to alkynes. Tetrahedron Lett 48:6655–6659

    CAS  Google Scholar 

  96. Barros OSR, Lang ES, Oliveira F, Reppe C, Zeni G (2002) Indium(I) iodide-mediated chemo-, regio-, and stereoselective hydroselenation of 2-alkyn-1-ol derivatives. Tetrahedron Lett 43:7921–7923

    CAS  Google Scholar 

  97. Peppe C, de Castro LB, Mello MA, Barros OSR (2008) Regioselective Markovnikov hydrochalcogenation of terminal alkynes with indium(III) benzenechalcogenolates. Synlett 2008:1165–1170

    Google Scholar 

  98. Ogawa A, Kudo A, Hirao T (1998) Palladium-catalyzed hydroselenation of allenes with benzeneselenol. Tetrahedron Lett 39:5213–5216

    CAS  Google Scholar 

  99. Masawaki T, Ogawa A, Kambe N, Ryu I, Sonoda N (1987) Oxygen induced free-radical addition of benzeneselenol to allenes. Chem Lett 16:2407–2408

    Google Scholar 

  100. Bäckvall JE, Ericsson A (1994) Palladium-catalyzed regioselective addition of thiophenol to conjugated enynes. Efficient synthesis of 2-(phenylsulfinyl) and 2-(phenylsulfonyl) 1,3-dienes. J Org Chem 59:5850–5851

    Google Scholar 

  101. Kondoh A, Yorimitsu H, Oshima K (2007) Palladium-catalyzed anti-hydrothiolation of 1-alkynylphosphines. Org Lett 9:1383–1385

    CAS  Google Scholar 

  102. Ishiyama T, Nishijima K, Miyaura N, Suzuki A (1993) Palladium(0)-catalyzed thioboration of terminal alkynes with 9-(alkylthio)-9-borabicyclo[3.3.1]nonane derivatives: Stereoselective synthesis of vinyl sulfides via the thioboration-cross-coupling sequence. J Am Chem Soc 115:7219–7225

    CAS  Google Scholar 

  103. Gabriele B, Salerno G, Fazio A (2000) Novel synthesis of substituted thiophenes by palladium-catalyzed cycloisomerization of (Z)-2-en-4-yne-1-thiols. Org Lett 2:351–352

    CAS  Google Scholar 

  104. Ali BE, Alper H (2002) Palladium-catalyzed hydrocarboxylation and related carbonylation reactions of π-bonded compounds. In: Negishi E (ed) Handbook of organopalladium chemistry for organic synthesis, vol II. Wiley, New York

    Google Scholar 

  105. Nomoto A, Ogawa A (2008) Carbonylation of Allenes. In: Kollár L (ed) Modern carbonylation methods. Wiley-VCH, Weinheim

    Google Scholar 

  106. Ogawa A, Takeba M, Kawakami J, Ryu I, Kambe N, Sonoda N (1995) The first example of transition-metal-catalyzed thioformylation of acetylenes with aromatic thiols and carbon monoxide. J Am Chem Soc 117:7564–7565

    CAS  Google Scholar 

  107. Kawakami J, Takeba M, Kamiya I, Sonoda N, Ogawa A (2003) Rhodium-catalyzed highly selective thioformylation of acetylenes with thiols and carbon monoxide. Tetrahedron 59:6559–6567

    CAS  Google Scholar 

  108. Ogawa A, Kawakami J, Mihara M, Ikeda T, Sonoda N, Hirao T (1997) Highly regioselective hydrothiocarboxylation of acetylenes with carbon monoxide and thiols catalyzed by Pt(PPh3)4. J Am Chem Soc 119:12380–12381

    CAS  Google Scholar 

  109. Kawakami J, Mihara M, Kamiya I, Takeba M, Ogawa A, Sonoda N (2003) Platinum-catalyzed highly selective thiocarbonylation of acetylenes with thiols and carbon monoxide. Tetrahedron 59:3521–3526

    CAS  Google Scholar 

  110. Ozaki T, Nomoto A, Ogawa A (2011) Crystal structures of β-chalcogeno-α, β-unsaturated chalcogenoesters: Novel intramolecular interaction between the carbonyl oxygen and the chalcogen atom at the β-position. Heteroat Chem 22:579–585

    CAS  Google Scholar 

  111. Xiao WJ, Vasapollo G, Alper H (1999) Highly chemo- and regioselective thiocarbonylation of conjugated enynes with thiols and carbon monoxide catalyzed by palladium complexes: An efficient and atom-economical access to 2-(phenylthiocarbonyl)-1,3-dienes. J Org Chem 64:2080–2084

    CAS  Google Scholar 

  112. Xiao WJ, Alper H (2005) Highly stereoselective palladium-catalyzed dithiocarbonylation of propargylic mesylates with thiols and carbon monoxide. J Org Chem 70:1802–1807

    CAS  Google Scholar 

  113. Xiao WJ, Alper H (1997) The first examples of the palladium-catalyzed thiocarbonylation of propargylic alcohols with thiols and carbon monoxide. J Org Chem 62:3422–3423

    CAS  Google Scholar 

  114. Ogawa A, Kawabe K, Kawakami J, Mihara M, Hirao T, Sonoda N (1998) Platinum(0)-catalyzed carbonylative lactonization of 5-hydroxy-1-pentyne with carbon monoxide in the presence of thiols. Organometallics 17:3111–3114

    CAS  Google Scholar 

  115. Xiao WJ, Vasapollo G, Alper H (1998) Highly regioselective palladium-catalyzed thiocarbonylation of allenes with thiols and carbon monoxide. J Org Chem 63:2609–2612

    CAS  Google Scholar 

  116. Kajitani M, Kamiya I, Nomoto A, Kihara N, Ogawa A (2006) Transition-metal-catalyzed carbonylation of allenes with carbon monoxide and thiols. Tetrahedron 62:6355–6360

    CAS  Google Scholar 

  117. Xiao WJ, Alper H (1999) regioselective carbonylative heteroannulation of o-iodothiophenols with allenes and carbon monoxide catalyzed by a palladium complex: A novel and efficient access to thiochroman-4-one derivatives. J Org Chem 64:9646–9652

    CAS  Google Scholar 

  118. Xiao WJ, Vasapollo G, Alper H (2000) Highly regioselective thiocarbonylation of conjugated dienes via palladium-catalyzed three-component coupling reactions. J Org Chem 65:4138–4144

    CAS  Google Scholar 

  119. Xiao WJ, Alper H (1998) Highly regioselective thiocarbonylation of allylic alcohols with thiols and carbon monoxide catalyzed by palladium complexes: A new and efficient route to β,γ-unsaturated thiol esters. J Org Chem 63:7939–7944

    CAS  Google Scholar 

  120. Li CF, Xiao WJ, Alper H (2009) Palladium-catalyzed ring-opening thiocarbonylation of vinylcyclopropanes with thiols and carbon monoxide. J Org Chem 74:888–890

    CAS  Google Scholar 

  121. Xiao WJ, Alper H (2001) First examples of enanthioselective palladium-catalyzed thiocarbonylation of prochiral 1,3-conjugated dienes with thiols and carbon monoxide: Efficient synthesis of optically active β,γ-unsaturated thiol esters. J Org Chem 66:6229–6233

    CAS  Google Scholar 

  122. Nomoto A, Shiino G, Ogawa A (2009) Palladium-catalyzed regioselective introduction of chalcogen moieties into porphyrin bearing an ethynyl group. Res Chem Int 35:965–971

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akiya Ogawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ogawa, A. (2011). Transition-Metal-Catalyzed S–H and Se–H Bonds Addition to Unsaturated Molecules. In: Ananikov, V., Tanaka, M. (eds) Hydrofunctionalization. Topics in Organometallic Chemistry, vol 43. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3418_2011_19

Download citation

Publish with us

Policies and ethics