Skip to main content

Copper-catalyzed Enantioselective Allylic Substitution

  • Chapter
  • First Online:

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 38))

Abstract

The efficiency of organocopper reagents in the displacement of allylic leaving groups has been well established during the past five decades. In sharp contrast, catalytic asymmetric version of this reaction using a chiral catalyst is a more recent field of research. This chapter presents an overview of tremendous studies towards the development of an It1;ldquo;ideallyIt1;rdquo; active catalyst achieving high regio- and enantioselectivities. The comparative reactivity and generality of peptides, phosphorus, as well as N-heterocyclic carbenes based catalysts are discussed in the first part. Then, relevant scope and synthetic applications are reviewed. Noteworthily, this chapter is restricted to CIt1;ndash;C bond formation processes, excluding CIt1;ndash;B and CIt1;ndash;Si bond formations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ojima I (2000) Catalytic asymmetric synthesis, 2nd edn. Wiley, New York

    Google Scholar 

  2. Jacobsen EN, Pfaltz A, Yamamoto H (1999) Comprehensive asymmetric catalysis I-III. Springer, Berlin

    Google Scholar 

  3. Takeuchi R (2002) Iridium complex-catalyzed highly selective organic synthesis. Synlett 1954It1;ndash;1965

    Google Scholar 

  4. Trost BM, Crawey ML (2003) Asymmetric transition-metal-catalyzed allylic alkylations: applications in total synthesis. Chem Rev 103:2921It1;ndash;2944

    CAS  Google Scholar 

  5. Trost BM (2004) Asymmetric allylic alkylation, an enabling methodology. J Org Chem 69:5813It1;ndash;5837

    CAS  Google Scholar 

  6. Miyabe H, Takemoto Y (2005) Regio- and stereocontrolled palladium- or iridium-catalyzed allylation. Synlett 1641It1;ndash;1655

    Google Scholar 

  7. Lu Z, Ma SM (2008) Metal-catalyzed enantioselective allylation in asymmetric synthesis. Angew Chem Int Ed 47:258It1;ndash;297

    CAS  Google Scholar 

  8. Bäckvall JE, Sellen M, Grant B (1990) Regiocontrol in copper-catalyzed Grignard reactions with allylic substrates. J Am Chem Soc 112:6615It1;ndash;6621

    Google Scholar 

  9. Bäckvall JE, Persson ESM, Bombrun A (1994) Regiocontrol in copper-catalyzed cross coupling of allylic chlorides with aryl Grignard reagents. J Org Chem 59:4126It1;ndash;4130

    Google Scholar 

  10. Persson ESM, Bäckvall JE (1995) The effect of solvent and Copper(I) precursor on the regioselectivity in the cross-coupling reaction of allylic acetates with preformed mono- and dibutylcuprates. Acta Chem Scand 49:899It1;ndash;906

    CAS  Google Scholar 

  11. Persson ESM, Vanklaveren M, Grove DM, Bäckvall JE, Vankoten G (1995) ortho-chelating arenethiolatocopper(I) complexes as versatile catalysts in the regioselective cross-coupling of allylic derivatives with nBuMgI It1;ndash; an example of reversed reactivity of leaving groups. Chem Eur J 1:351It1;ndash;359

    CAS  Google Scholar 

  12. Karlstrom ASE, Bäckvall JE (2001) Experimental evidence supporting a CuIII intermediate in cross-coupling reactions of allylic esters with diallylcuprate species. Chem Eur J 7:1981It1;ndash;1989

    CAS  Google Scholar 

  13. Goering HL, Kantner SS (1981) Alkylation of allylic derivatives. Regio- and stereochemistry of alkylation of allylic alcohols by the Murahashi method. J Org Chem 46:2144It1;ndash;2148

    CAS  Google Scholar 

  14. Goering HL, Kantner SS, Tseng CC (1983) Alkylation of allylic derivatives. 4. On the mechanism of alkylation of allylic N-phenylcarbamates with lithium dialkylcuprates. J Org Chem 48:715It1;ndash;721

    CAS  Google Scholar 

  15. Goering HL, Kantner SS (1983) Alkylation of allylic derivatives. 5. Loss of double-bond configuration associated with.alpha.-alkylation of allylic carboxylates with dialkylcuprates. J Org Chem 48:721It1;ndash;724

    CAS  Google Scholar 

  16. Goering HL, Singleton VD (1983) Alkylation of allylic derivatives. 6. Regiochemistry of alkylation of allylic acetates with dialkylcuprates. J Org Chem 48:1531It1;ndash;1533

    CAS  Google Scholar 

  17. Goering HL, Tseng CC (1983) Alkylation of allylic derivatives. 7. Stereochemistry of alkylation of the isomeric trans-.alpha., gamma.-methyl(phenyl)allyl acetates with lithium dialkylcuprates and alkylcyanocuprates. J Org Chem 48:3986It1;ndash;3990

    CAS  Google Scholar 

  18. Goering HL, Kantner SS (1984) Alkylation of allylic derivatives. 8. Regio- and stereochemistry of alkylation of allylic carboxylates with lithium methylcyanocuprate. J Org Chem 49:422It1;ndash;426

    CAS  Google Scholar 

  19. Goering HL, Tseng CC (1985) Alkylation of allylic derivatives. 9. On the stereochemistry of alkylation of acyclic allylic alcohols by the Murahashi method. J Org Chem 50:1597It1;ndash;1599

    CAS  Google Scholar 

  20. Goering HL, Kantner SS, Seitz EP (1985) Alkylation of allylic derivatives. 10. Relative rates of reactions of allylic carboxylates with lithium dimethylcuprate. J Org Chem 50:5495It1;ndash;5499

    CAS  Google Scholar 

  21. Tseng CC, Paisley SD, Goering HL (1986) Alkylation of allylic derivatives. 11. Copper(I)-catalyzed cross coupling of allylic carboxylates with Grignard reagents. J Org Chem 51:2884It1;ndash;2891

    Google Scholar 

  22. Tseng CC, Yen SJ, Goering HL (1986) Alkylation of allylic derivatives. 12. Stereochemistry of copper(I)-catalyzed cross coupling of allylic carboxylates with Grignard reagents. J Org Chem 51:2892It1;ndash;2895

    Google Scholar 

  23. Underiner TL, Goering HL (1988) Alkylation of allylic derivatives. 13. Cross-coupling reactions of the isomeric 2,3,4,4a,5,6-hexahydro-2-naphthalenyl carboxylates with organocopper and Grignard reagents. J Org Chem 53:1140It1;ndash;1146

    CAS  Google Scholar 

  24. Underiner TL, Paisley SD, Schmitter J, Lesheski L, Goering HL (1989) Alkylation of allylic derivatives. 14. Relationship of double-bond configuration between reactant and product for cross-coupling reactions of Z-allylic carboxylates with organocopper reagents. J Org Chem 54:2369It1;ndash;2374

    CAS  Google Scholar 

  25. Underiner TL, Goerinng HL (1989) Cross coupling of allylic derivatives. 15. Regio- and stereospecfic cross-coupling reactions of dienyl allylic N-phenylcarbamates with phenylcopper reagents. J Org Chem 54:3239It1;ndash;3240

    CAS  Google Scholar 

  26. Underiner TL, Goering HL (1990) Cross coupling of allylic derivatives. 16. Regiochemistry of cross coupling of the isomeric (E, E)-3,5-heptadien-2-yl and (E, E)-2,5-heptadien-4-yl pivalates with organocopper and Grignard reagents. J Org Chem 55:2757It1;ndash;2761

    CAS  Google Scholar 

  27. Underiner TL, Goering HL (1991) Alkylation of allylic derivatives. 17. Cross-coupling reactions of diallylic pivalates with butyl- and phenylcopper reagents. J Org Chem 56:2563It1;ndash;2572

    CAS  Google Scholar 

  28. Mori S, Nakamura E, Morokuma K (2000) Mechanism of SN2 alkylation reactions of lithium organocuprate clusters with alkyl halides and epoxides. Solvent Effects, BF3 effects, and trans-diaxial epoxide opening. J Am Chem Soc 122:7294It1;ndash;7307

    CAS  Google Scholar 

  29. Yamanaka M, Kato S, Nakamura E (2004) Mechanism and regioselectivity of reductive elimination of It1;pi;-allylcopper (III) intermediates. J Am Chem Soc 126:6287It1;ndash;6293

    CAS  Google Scholar 

  30. Norinder J, Bäckvall JE, Yoshikai N, Nakamura E (2006) Unusual homocoupling in the reaction of diorganocuprates with an allylic halide. Organometallics 25:2129It1;ndash;2132

    CAS  Google Scholar 

  31. Yoshikai N, Zhang SL, Nakamura B (2008) Origin of the regio- and stereoselectivity of allylic substitution of organocopper reagents. J Am Chem Soc 130:12862It1;ndash;12863

    CAS  Google Scholar 

  32. Breit B, Demel P (2002) In: Krause N (ed) Modern organocopper chemistry. Wiley-VCH, Weinheim, p 210

    Google Scholar 

  33. Spino C (2009) In: Rappoport Z, Marek I (eds) The chemistry of organocopper compounds. Wiley, Hoboken, p 603

    Google Scholar 

  34. Christoffers J, Mann A (2001) Enantioselective construction of quaternary stereocenters. Angew Chem Int Ed 40:4591It1;ndash;4597

    CAS  Google Scholar 

  35. KarlstrIt1;ouml;m ASE, Bäckvall JE (2002) In: Krause N (ed) Modern organocopper chemistry. Wiley-VCH, Weinheim, p 259

    Google Scholar 

  36. Christoffers J, Baro A (2005) Stereoselective construction of quaternary stereocenters. Adv Synth Catal 347:1473It1;ndash;1482

    CAS  Google Scholar 

  37. Kar A, Argade NP (2005) A concise account of recent SN2It1;prime; Grignard coupling reactions in organic synthesis. Synthesis 2995It1;ndash;3022

    Google Scholar 

  38. Yorimitsu H, Oshima K (2005) Recent progress in asymmetric allylic substitutions catalyzed by chiral copper complexes. Angew Chem Int Ed 44:4435It1;ndash;4439

    CAS  Google Scholar 

  39. Alexakis A, Malan C, Lea L, Tissot-Croset K, Polet D, Falciola C (2006) The Copper-catalyzed asymmetric allylic substitution. Chimia 60:124It1;ndash;130

    CAS  Google Scholar 

  40. Geurts K, Fletcher SP, van Zijl AW, Minnaard AJ, Feringa BL (2008) Copper-catalyzed asymmetric allylic substitution reactions with organozinc and Grignard reagents. Pure Appl Chem 80:1025It1;ndash;1037

    CAS  Google Scholar 

  41. Harutyunyan SR, den Hartog T, Geurts K, Minnaard AJ, Feringa BL (2008) Catalytic asymmetric conjugate addition and allylic alkylation with Grignard reagents. Chem Rev 108:2824It1;ndash;2852

    CAS  Google Scholar 

  42. Alexakis A, Bäckvall JE, Krause N, Pamies O (2008) Enantioselective copper-catalyzed conjugate addition and allylic substitution reactions. Chem Rev 108:2796It1;ndash;2823

    CAS  Google Scholar 

  43. Falciola CA, Alexakis A (2008) Copper-catalyzed asymmetric allylic alkylation. Eur J Org Chem 3765It1;ndash;3780

    Google Scholar 

  44. Vanklaveren M, Persson ESM, Delvillar A, Grove DM, Bäckvall JE, van Koten G (1995) Chiral arenethiolatocopper(I) catalyzed substitution reactions of acyclic allylic substrates with Grignard reagents. Tetrahedron Lett 36:3059It1;ndash;3062

    CAS  Google Scholar 

  45. Meuzelaar GJ, Karlstrom ASE, van Klaveren M, Persson ESM, del Villar A, van Koten G (2000) Asymmetric Induction in the arenethiolatocopper(I)-catalyzed substitution reaction of Grignard reagents with allylic substrates. Tetrahedron 56:2895It1;ndash;2903

    CAS  Google Scholar 

  46. Karlstrom ASE, Huerta FF, Meuzelaar GJ, Bäckvall JE (2001) Ferrocenyl thiolates as ligands in the enantioselective copper-catalyzed substitution of allylic acetates with Grignard reagents. Synlett 923It1;ndash;926

    Google Scholar 

  47. Cotton HK, Norinder J, Bäckvall JE (2006) Screening of ligands in the asymmetric metallocenethiolatocopper(I)-catalyzed allylic substitution with Grignard reagents. Tetrahedron 62:5632It1;ndash;5640

    CAS  Google Scholar 

  48. DIt1;uuml;bner F, Knockel P (1999) Copper(I)-catalyzed enantioselective substitution of allyl chlorides with diorganozinc compounds. Angew Chem Int Ed 38:379It1;ndash;381

    Google Scholar 

  49. DIt1;uuml;bner F, Knochel P (2000) Highly enantioselective copper-catalyzed substitution of allylic chlorides with diorganozincs. Tetrahedron Lett 41:9233It1;ndash;9237

    Google Scholar 

  50. Goldsmith PJ, Teat SJ, Woodward S (2005) Enantioselective preparation of It1;beta;, It1;beta;-disubstituted It1;alpha;-methylenepropionates by MAO promotion of the zinc Schlenk equilibrium. Angew Chem Int Ed 44:2235It1;ndash;2237

    CAS  Google Scholar 

  51. Borner C, Gimeno J, Gladiali S, Goldsmith PJ, Ramazzotti D, Woodward S (2000) Asymmetric chemo- and regiospecific addition of organozinc reagents to BaylisIt1;ndash;Hillman derived allylic electrophiles. Chem Commun 2433It1;ndash;2434

    Google Scholar 

  52. Alexakis A, Malan C, Lea L, Benhaim C, Fournioux X (2001) Enantioselective copper-catalyzed SN2It1;prime; substitution with Grignard reagents. Synlett 927It1;ndash;930

    Google Scholar 

  53. Alexakis A, Croset K (2002) Tandem copper-catalyzed enantioselective allylationIt1;ndash;metathesis. Org Lett 4:4147It1;ndash;4149

    CAS  Google Scholar 

  54. Malda H, van Zijl AW, Arnold LA, Feringa BL (2001) Enantioselective copper-catalyzed allylic alkylation with dialkylzincs using phosphoramidite ligands. Org Lett 3:1169It1;ndash;1171

    CAS  Google Scholar 

  55. Shi WJ, Wang LX, Fu Y, Zhu SF, Zhou QL (2003) Highly regioselective asymmetric copper-catalyzed allylic alkylation with dialkylzincs using monodentate chiral spiro phosphoramidite and phosphite ligands. Tetrahedron Asymmetr 14:3867It1;ndash;3872

    CAS  Google Scholar 

  56. Van Zijl AW, Arnold LA, Minnaard AJ, Feringa BL (2004) Highly enantioselective copper-catalyzed allylic alkylation with phosphoramidite ligands. Adv Synth Catal 346:413It1;ndash;420

    Google Scholar 

  57. Tissot-Croset K, Polet D, Alexakis A (2004) A highly effective phosphoramidite ligand for asymmetric allylic substitution. Angew Chem Int Ed 43:2426It1;ndash;2428

    CAS  Google Scholar 

  58. Tissot-Croset K, Polet D, Gille S, Hawner C, Alexakis A (2004) Synthesis and use of a phosphoramidite ligand for the copper-catalyzed enantioselective allylic substitution. Tandem allylic substitution/ring-closing metathesis. Synthesis 2586It1;ndash;2590

    Google Scholar 

  59. Tissot-Croset K, Alexakis A (2004) Copper catalyzed enantioselective allylic substitution by MeMgX. Tetrahedron Lett 45:7375It1;ndash;7378

    CAS  Google Scholar 

  60. Luchaco-Cullis CA, Mizutani H, Murphy KE, Hoveyda AH (2001) Modular pyridinyl peptide ligands in asymmetric catalysis: enantioselective synthesis of quaternary carbon atoms through copper-catalyzed allylic substitutions. Angew Chem Int Ed 40:1456It1;ndash;1460

    CAS  Google Scholar 

  61. Kacprzynski MA, Hoveyda AH (2004) Cu-catalyzed asymmetric allylic alkylations of aromatic and aliphatic phosphates with alkylzinc reagents. An effective method for enantioselective synthesis of tertiary and quaternary carbons. J Am Chem Soc 126:10676It1;ndash;10681

    CAS  Google Scholar 

  62. Hoveyda AH, Hird AW, Kacprzynski MA (2004) Small peptides as ligands for catalytic asymmetric alkylations of olefins. Rational design of catalysts or of searches that lead to them? Chem Commun 1779It1;ndash;1785

    Google Scholar 

  63. Ongeri S, Piarulli U, Roux M, Monti C, Gennari C (2002) Synthesis and screening of new chiral ligands for the copper-catalysed enantioselective allylic substitution. Helv Chim Acta 85:3388It1;ndash;3399

    CAS  Google Scholar 

  64. Lopez F, van Zijl AW, Minnaard AJ, Feringa BL (2006) Highly enantioselective Cu-catalysed allylic substitutions with Grignard reagents. Chem Commun 409It1;ndash;411

    Google Scholar 

  65. Selim KB, Yamada K, Tomioka K (2008) Copper-catalyzed asymmetric allylic substitution with aryl and ethyl Grignard reagents. Chem Commun 5140It1;ndash;5142

    Google Scholar 

  66. Yoshikai N, Miura K, Nakamura E (2009) Enantioselective copper-catalyzed allylic substitution reaction with aminohydroxyphosphine ligand. Adv Synth Catal 351:1014It1;ndash;1018

    CAS  Google Scholar 

  67. Bourissou D, Guerret O, Gabbaie FP, Bertrand G (2000) Stable carbenes. Chem Rev 100:39It1;ndash;92

    CAS  Google Scholar 

  68. CIt1;eacute;sar V, Bellemin-Laponnaz S, Gade LH (2004) Chiral N-heterocyclic carbenes as stereodirecting ligands in asymmetric catalysis. Chem Soc Rev 33:619It1;ndash;636

    Google Scholar 

  69. Crudden CM, Allen DP (2004) Stability and reactivity of N-heterocyclic carbene complexes. Coord Chem Rev 248:2247It1;ndash;2273

    CAS  Google Scholar 

  70. Crabtree RH (2005) NHC ligands versus cyclopentadienyls and phosphines as spectator ligands in organometallic catalysis. J Organomet Chem 690:5451It1;ndash;5457

    CAS  Google Scholar 

  71. Dible BR, Sigman MS (2006) Steric effects in the aerobic oxidation of It1;pi;-allylnickel(II) complexes with N-heterocyclic carbenes. Inorg Chem 45:8430It1;ndash;8441

    CAS  Google Scholar 

  72. Clavier H, Nolan SP (2007) N-heterocyclic carbenes: advances in transition metal-mediated transformations and organocatalysis. Chem B Org Chem 103:193It1;ndash;222

    CAS  Google Scholar 

  73. Kuehl O (2007) The chemistry of functionalised N-heterocyclic carbenes. Chem Soc Rev 36:592It1;ndash;607

    CAS  Google Scholar 

  74. Liddle ST, Edworthy IS, Arnold PL (2007) Anionic tethered N-heterocyclic carbene chemistry. Chem Soc Rev 36:1732It1;ndash;1744

    CAS  Google Scholar 

  75. Diez-Gonzalez S, Nolan SP (2007) Stereoelectronic parameters associated with N-heterocyclic carbene (NHC) ligands: a quest for understanding. Coord Chem Rev 251:874It1;ndash;883

    CAS  Google Scholar 

  76. Marion N, Nolan SP (2008) N-heterocyclic carbenes in gold catalysis. Chem Soc Rev 37:1776It1;ndash;1782

    CAS  Google Scholar 

  77. Kelly RA III, Clavier H, Giudice S, Scott NM, Stevens ED, Bordner J, Samardjiev I, Hoff CD, Cavallo L, Nolan SP (2008) Determination of N-heterocyclic carbene (NHC) steric and electronic parameters using the [(NHC)Ir(CO)2Cl] system. Organometallics 27:202It1;ndash;210

    CAS  Google Scholar 

  78. Tominaga S, Oi Y, Kato T, An DK, Okamoto S (2004) It1;gamma;-selective allylic substitution reaction with Grignard reagents catalyzed by copper N-heterocyclic carbene complexes and its application to enantioselective synthesis. Tetrahedron Lett 45:5585It1;ndash;5588

    CAS  Google Scholar 

  79. Okamoto S, Tominaga S, Saino N, Kase K, Shimoda K (2005) Allylic substitution reactions with Grignard reagents catalyzed by imidazolium and 4,5-dihydroimidazolium carbeneIt1;ndash;CuCl complexes. J Organomet Chem 690:6001It1;ndash;6007

    CAS  Google Scholar 

  80. Alexakis A, Winn CL, Guillen F, Pytkowicz J, Roland S, Mangeney P (2003) Asymmetric synthesis with N-heterocyclic carbenes. Application to the copper-catalyzed conjugate addition. Adv Synth Catal 345:345It1;ndash;348

    CAS  Google Scholar 

  81. Larsen AO, Leu W, Oberhuber CN, Campbell JE, Hoveyda AH (2004) Bidentate NHC-based chiral ligands for efficient Cu-catalyzed enantioselective allylic alkylations: structure and activity of an air-stable chiral Cu complex. J Am Chem Soc 126:11130It1;ndash;11131

    CAS  Google Scholar 

  82. Van Veldhuizen JJ, Campbell JE, Giudici RE, Hoveyda AH (2005) A readily available chiral Ag-based N-heterocyclic carbene complex for use in efficient and highly enantioselective Ru-catalyzed olefin metathesis and Cu-catalyzed allylic alkylation reactions. J Am Chem Soc 127:6877It1;ndash;6882

    Google Scholar 

  83. Lee Y, Akiyama K, Gillingham DG, Brown MK, Hoveyda AH (2008) Highly site- and enantioselective Cu-catalyzed allylic alkylation reactions with easily accessible vinylaluminum reagents. J Am Chem Soc 130:446It1;ndash;447

    CAS  Google Scholar 

  84. Akiyama K, Gao F, Hoveyda AH (2010) Stereoisomerically pure trisubstituted vinylaluminum reagents and their utility in copper-catalyzed enantioselective synthesis of 1,4-dienes containing Z or E alkenes. Angew Chem Int Ed 49:419It1;ndash;423

    CAS  Google Scholar 

  85. Selim KB, Matsumoto Y, Yamada K, Tomioka K (2009) Efficient chiral N-heterocyclic carbene/copper(I)-catalyzed asymmetric allylic arylation with aryl Grignard reagents. Angew Chem Int Ed 48:8733It1;ndash;8735

    CAS  Google Scholar 

  86. Jennequin T, Wencel-Delord J, Rix D, Daubignard J, CrIt1;eacute;visy C, Mauduit M (2010) Chelating hydroxyalkyl NHC as efficient chiral ligands for room-temperature copper-catalyzed asymmetric allylic alkylation. Synlett 1661It1;ndash;1665

    Google Scholar 

  87. Murphy KE, Hoveyda AH (2003) Enantioselective synthesis of It1;alpha;-alkyl-It1;beta;, It1;gamma;-unsaturated esters through efficient Cu-catalyzed allylic alkylations. J Am Chem Soc 125:4690It1;ndash;4691

    CAS  Google Scholar 

  88. Murphy KE, Hoveyda AH (2005) Catalytic enantioselective synthesis of quaternary all-carbon stereogenic centers. Preparation of It1;alpha;, It1;alpha;It1;prime;-disubstituted It1;beta;, It1;gamma;-unsaturated esters through Cu-catalyzed asymmetric allylic alkylations. Org Lett 7:1255It1;ndash;1258

    CAS  Google Scholar 

  89. Carosi L, Hall DG (2007) Catalytic enantioselective preparation of It1;alpha;-substituted allylboronates: One-pot addition to functionalized aldehydes and a route to chiral allylic trifluoroborate reagents. Angew Chem Int Ed 46:5913It1;ndash;5915

    CAS  Google Scholar 

  90. Kacprzynski MA, May TL, Kazane SA, Hoveyda AH (2007) Enantioselective synthesis of allylsilanes bearing tertiary and quaternary Si-substituted carbons through Cu-catalyzed allylic alkylations with alkylzinc and arylzinc reagents. Angew Chem Int Ed 46:4554It1;ndash;4558

    CAS  Google Scholar 

  91. Falciola CA, Tissot-Croset K, Alexakis A (2006) It1;beta;-disubstituted allylic chlorides: substrates for the Cu-catalyzed asymmetric SN2It1;prime; reaction. Angew Chem Int Ed 45:5995It1;ndash;5998

    CAS  Google Scholar 

  92. Falciola CA, Tissot-Croset K, Reyneri H, Alexakis A (2008) It1;beta;- and It1;gamma;-disubstituted olefins: substrates for copper-catalyzed asymmetric allylic substitution. Adv Synth Catal 350:1090It1;ndash;1100

    CAS  Google Scholar 

  93. Kapat A, Nyfeler E, Giuffredi GT, Renaud P (2009) Intramolecular Schmidt reaction involving primary azidoalcohols under nonacidic conditions: synthesis of indolizidine (It1;minus;)-167B. J Am Chem Soc 131:17746

    CAS  Google Scholar 

  94. Giacomina F, Riat D, Alexakis A (2010) It1;omega;-ethylenic allylic substrates as alternatives to cyclic substrates in copper- and iridium-catalyzed asymmetric allylic alkylation. Org Lett 12:1156It1;ndash;1159

    CAS  Google Scholar 

  95. Falciola CA, Alexakis A (2007) 1,4-dichloro- and 1,4-dibromo-2-butenes as substrates for Cu-catalyzed asymmetric allylic substitution. Angew Chem Int Ed 46:2619It1;ndash;2622

    CAS  Google Scholar 

  96. Falciola CA, Alexakis A (2008) High diversity on simple substrates: 1,4-dihalo-2-butenes and other difunctionalized allylic halides for copper-catalyzed SN2It1;prime; reactions. Chem Eur J 14:10615It1;ndash;10627

    CAS  Google Scholar 

  97. Van Zijl AW, Szymanski W, Lopez F, Minnaard AJ, Feringa BL (2008) Catalytic enantioselective synthesis of vicinal dialkyl arrays. J Org Chem 73:6994It1;ndash;7002

    Google Scholar 

  98. Geurts K, Fletcher SP, Feringa BL (2006) Copper catalyzed asymmetric synthesis of chiral allylic esters. J Am Chem Soc 128:15572It1;ndash;15573

    CAS  Google Scholar 

  99. Piarulli U, Daubos P, Claverie C, Roux M, Gennari C (2003) A catalytic and enantioselective desymmetrization of meso cyclic allylic bisdiethylphosphates with organozinc reagents. Angew Chem Int Ed 42:234It1;ndash;236

    CAS  Google Scholar 

  100. Piarulli U, Daubos P, Claverie C, Monti C, Gennari C (2005) Copper-catalysed, enantioselective desymmetrisation of meso cyclic allylic bis(diethyl phosphates) with organozinc reagents. Eur J Org Chem 895It1;ndash;906

    Google Scholar 

  101. Piarulli U, Claverie C, Daubos P, Gennari C, Minnaard AJ, Feringa BL (2003) Copper phosphoramidite-catalyzed enantioselective desymmetrization of meso-cyclic allylic bisdiethyl phosphates. Org Lett 5:4493It1;ndash;4496

    CAS  Google Scholar 

  102. Bertozzi F, Crotti P, Macchia F, Pineschi M, Arnold A, Feringa BL (2000) A new catalytic and enantioselective desymmetrization of symmetrical methylidene cycloalkene oxides. Org Lett 2:933It1;ndash;936

    CAS  Google Scholar 

  103. Del Moro F, Crotti P, Di Bussolo V, Macchia F, Pineschi M (2003) Catalytic enantioselective desymmetrization of COT-monoepoxide. Maximum deviation from coplanarity for an SN2It1;prime;-cuprate alkylation. Org Lett 5:1971It1;ndash;1974

    Google Scholar 

  104. Bertozzi, F, Crotti P, Del Moro F, Di Bussolo V, Macchia F, Pineschi M (2003) Copper-catalysed addition of organometallic reagents to vinyl diepoxides It1;ndash; a novel route to oxa-bridged systems and to substituted allylic alcohols. Eur J Org Chem 1264It1;ndash;1270

    Google Scholar 

  105. Bertozzi F, Pineschi M, Macchia F, Arnold LA, Minnaard AJ, Feringa BL (2002) Copper phosphoramidite catalyzed enantioselective ring-opening of oxabicyclic alkenes: remarkable reversal of stereocontrol. Org Lett 4:2703It1;ndash;2705

    CAS  Google Scholar 

  106. Zhang W, Zhu SF, Qiao XC, Zhou QL (2008) Highly enantioselective copper-catalyzed ring opening of oxabicyclic alkenes with Grignard reagents. Chem Asian J 3:2105It1;ndash;2111

    CAS  Google Scholar 

  107. Millet R, Bernardez T, Palais L, Alexakis A (2009) Copper-catalyzed desymmetrization of oxabenzonorbornadienes with aluminum reagents. Tetrahedron Lett 50:3474It1;ndash;3477

    CAS  Google Scholar 

  108. Millet R, Gremaud L, Bernardez T, Palais L, Alexakis A (2009) Copper-catalyzed asymmetric ring-opening reaction of oxabenzonorbornadienes with Grignard and aluminum reagents. Synthesis 2101It1;ndash;2112

    Google Scholar 

  109. Pineschi M, Del Moro F, Crotti P, Macchia F (2005) Catalytic asymmetric ring opening of 2,3-substituted norbornenes with organometallic reagents: A new formal aza functionalization of cyclopentadiene. Org Lett 7:3605It1;ndash;3607

    CAS  Google Scholar 

  110. Bournaud C, Falciola C, Lecourt T, Rosset S, Alexakis A, Micouin L (2006) On the use of phosphoramidite ligands in copper-catalyzed asymmetric transformations with trialkylaluminum reagents. Org Lett 8:3581It1;ndash;3584

    CAS  Google Scholar 

  111. Palais L, Mikhel IS, Bournaud C, Micouin L, Falciola CA, Vuagnoux-dIt1;rsquo;Augustin M, Rosset S, Bernardinelli G, Alexakis A (2007) SimplePhos monodentate ligands: synthesis and application in copper-catalyzed reactions. Angew Chem Int Ed 46:7462It1;ndash;7465

    CAS  Google Scholar 

  112. Palais L, Bournaud C, Micouin L, Alexakis A (2010) Copper-catalysed ring opening of polycyclic meso-hydrazines with trialkylaluminium reagents and simplephos ligands. Chem Eur J 16:2567It1;ndash;2573

    CAS  Google Scholar 

  113. Gillingham DG, Hoveyda AH (2007) Chiral N-heterocyclic carbenes in natural product synthesis: application of Ru-catalyzed asymmetric ring-opening/cross-metathesis and Cu-catalyzed allylic alkylation to total synthesis of baconipyrone C. Angew Chem Int Ed 46:3860It1;ndash;3864

    CAS  Google Scholar 

  114. Pineschi M (2004) Copper-catalyzed enantioselective allylic alkylation ring-opening reactions of small-ring heterocycles with hard alkyl metals. New J Chem 28:657It1;ndash;665

    CAS  Google Scholar 

  115. Badalassi F, Crotti P, Macchia F, Pineschi M, Arnold A, Feringa BL (1998) Catalytic enantioselective carbonIt1;ndash;carbon bond formation by addition of dialkylzinc reagents to cyclic 1,3-diene monoepoxides. Tetrahedron Lett 39:7795It1;ndash;7798

    CAS  Google Scholar 

  116. Gini F, Del Moro F, Macchia F, Pineschi M (2003) Regio- and enantioselective copper-catalyzed addition of dialkylzinc reagents to cyclic 2-alkenyl aziridines. Tetrahedron Lett 44:8559It1;ndash;8562

    CAS  Google Scholar 

  117. Millet R, Alexakis A (2007) Copper-catalyzed kinetic resolution of 1,3-cyclohexadiene monoepoxide with Grignard reagents. Synlett 435It1;ndash;438

    Google Scholar 

  118. Kagan HB, Fiaud JC (1988) Kinetic resolution. Top Stereochem 18:249It1;ndash;330

    CAS  Google Scholar 

  119. Millet R, Alexakis A (2008) SimplePhos as efficient ligand for the copper-catalyzed kinetic resolution of cyclic vinyloxiranes with grignard reagents. Synlett 1797It1;ndash;1800

    Google Scholar 

  120. Bertozzi F, Crotti P, Macchia F, Pineschi M, Feringa BL (2001) Highly enantioselective regiodivergent and catalytic parallel kinetic resolution. Angew Chem Int Ed 40:930It1;ndash;932

    CAS  Google Scholar 

  121. Pineschi M, Del Moro F, Crotti P, Di Bussolo V, Macchia F (2004) Catalytic regiodivergent kinetic resolution of allylic epoxides: a new entry to allylic and homoallylic alcohols with high optical purity. J Org Chem 69:2099It1;ndash;2105

    CAS  Google Scholar 

  122. Pineschi M, Del Moro F, Crotti P, Di Bussolo V, Macchia F (2005) Copper-catalyzed highly enantioselective synthesis of cyclic allylic and homoallylic alcohols with dialkylzinc reagents. Synthesis 334It1;ndash;337

    Google Scholar 

  123. Trost BM, Bunt RC (1994) Asymmetric induction in allylic alkylations of 3-(acyloxy)cycloalkenes. J Am Chem Soc 116:4089It1;ndash;4090

    CAS  Google Scholar 

  124. Trost BM, Fandrick DR (2007) Palladium-catalyzed dynamic kinetic asymmetric allylic alkylation with the DPPBA ligands. Adrichim Acta 40:59It1;ndash;72

    CAS  Google Scholar 

  125. Langlois JB, Alexakis A (2009) Dynamic kinetic asymmetric transformation in copper catalyzed allylic alkylation. Chem Commun 3868It1;ndash;3870

    Google Scholar 

  126. Langlois JB, Alexakis A (2010) Copper-catalyzed asymmetric allylic alkylation of racemic cyclic substrates: application of dynamic kinetic asymmetric transformation (DYKAT). Adv Synth Catal 352:447It1;ndash;457

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Alexakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Langlois, JB., Alexakis, A. (2011). Copper-catalyzed Enantioselective Allylic Substitution. In: Kazmaier, U. (eds) Transition Metal Catalyzed Enantioselective Allylic Substitution in Organic Synthesis. Topics in Organometallic Chemistry, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3418_2011_12

Download citation

Publish with us

Policies and ethics