Skip to main content

Artificial Metalloproteins Exploiting Vacant Space: Preparation, Structures, and Functions

  • Chapter
  • First Online:
Topics in Organometallic Chemistry

Abstract

Molecular design of artificial metalloproteins is one of the most attractive subjects in bioinorganic chemistry. Protein vacant space has been utilized to prepare artificial metalloproteins because it provides a unique chemical environment for application to catalysts and to biomaterials bearing electronic, magnetic, and medical properties. Recently, X-ray crystal structural analysis has increased in this research area because it is a powerful tool for understanding the interactions of metal complexes and protein scaffolds, and for providing rational design of these composites. This chapter reviews the recent studies on the preparation methods and X-ray crystal structural analyses of metal/protein composites, and their functions as catalysts, metal-drugs, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Lu Y (2006) Angew Chem Int Ed 45:5588–5601

    Article  CAS  Google Scholar 

  2. Steinreiber J, Ward TR (2008) Coord Chem Rev 252:751–766

    Article  CAS  Google Scholar 

  3. Thomas CM, Ward TR (2005) Chem Soc Rev 34:337–346

    Article  PubMed  CAS  Google Scholar 

  4. Uchida M, Klem MT, Allen M, Suci P, Flenniken M, Gillitzer E, Varpness Z, Liepold LO, Young M, Douglas T (2007) Adv Mater 19:1025–1042

    Article  CAS  Google Scholar 

  5. Ueno T, Abe S, Yokoi N, Watanabe Y (2007) Coord Chem Rev 251:2717

    Article  CAS  Google Scholar 

  6. Ueno T, Yokoi N, Abe S, Watanabe Y (2007) J Inorg Biochem 101:1667

    Article  PubMed  CAS  Google Scholar 

  7. Akabori S, Sakurai S, Izumi Y, Fujii Y (1956) Nature 178:323–324

    Article  ADS  CAS  Google Scholar 

  8. Wilson ME, Whitesides GM (1978) J Am Chem Soc 100:306–307

    Article  CAS  Google Scholar 

  9. Abe S, Ueno T, Reddy PAN, Okazaki S, Hikage T, Suzuki A, Yamane T, Nakajima H, Watanabe Y (2007) Inorg Chem 46:5137–5139

    Article  PubMed  CAS  Google Scholar 

  10. Alexeev D, Zhu HZ, Guo ML, Zhong WQ, Hunter DJB, Yang WP, Campopiano DJ, Sadler PJ (2003) Nat Struct Biol 10:297–302

    Article  PubMed  CAS  Google Scholar 

  11. Calderone V, Casini A, Mangani S, Messori L, Orioli PL (2006) Angew Chem Int Ed 45:1267–1269

    Article  CAS  Google Scholar 

  12. Debreczeni JE, Bullock AN, Atilla GE, Williams DS, Bregman H, Knapp S, Meggers E (2006) Angew Chem Int Ed 45:1580–1585

    Article  CAS  Google Scholar 

  13. Hu YZ, Tsukiji S, Shinkai S, Oishi S, Hamachi I (2000) J Am Chem Soc 122:241–253

    Article  CAS  Google Scholar 

  14. McNae IW, Fishburne K, Habtemariam A, Hunter TM, Melchart M, Wang FY, Walkinshaw MD, Sadler PJ (2004) Chem Commun 2004:1786–1787

    Article  CAS  Google Scholar 

  15. Satake Y, Abe S, Okazaki S, Ban N, Hikage T, Ueno T, Nakajima H, Suzuki A, Yamane T, Nishiyama H, Watanabe Y (2007) Organometallics 26:4904–4908

    Article  CAS  Google Scholar 

  16. Ueno T, Ohashi M, Kono M, Kondo K, Suzuki A, Yamane T, Watanabe Y (2004) Inorg Chem 43:2852–2858

    Article  PubMed  CAS  Google Scholar 

  17. Ueno T, Koshiyama T, Ohashi M, Kondo K, Kono M, Suzuki A, Yamane T, Watanabe Y (2005) J Am Chem Soc 127:6556–6562

    Article  PubMed  CAS  Google Scholar 

  18. Ueno T, Yokoi N, Unno M, Matsui T, Tokita Y, Yamada M, Ikeda-Saito M, Nakajima H, Watanabe Y (2006) Proc Natl Acad Sci USA 103:9416–9421

    Article  PubMed  ADS  CAS  Google Scholar 

  19. Zhong WQ, Alexeev D, Harvey I, Guo ML, Hunter DJB, Zhu HZ, Campopiano DJ, Sadler PJ (2004) Angew Chem Int Ed43:5914–5918

    Article  CAS  Google Scholar 

  20. Zunszain PA, Ghuman J, Komatsu T, Tsuchida E, Curry S (2003) BMC Struct Biol 3:6–14

    Article  PubMed  Google Scholar 

  21. Hayashi T, Hitomi Y, Ando T, Mizutani T, Hisaeda Y, Kitagawa S, Ogoshi H (1999) J Am Chem Soc 121:7747–7750

    Article  CAS  Google Scholar 

  22. Hayashi T, Murata D, Makino M, Sugimoto H, Matsuo T, Sato H, Shiro Y, Hisaeda Y (2006) Inorg Chem 45:10530–10536

    Article  PubMed  CAS  Google Scholar 

  23. Carey JR, Ma SK, Pfister TD, Garner DK, Kim HK, Abramite JA, Wang Z, Guo Z, Lu Y (2004) J Am Chem Soc 126:10812–10813

    Article  PubMed  CAS  Google Scholar 

  24. Ohashi M, Koshiyama T, Ueno T, Yanase M, Fujii H, Watanabe Y (2003) Angew Chem Int Ed 42:1005–1008

    Article  CAS  Google Scholar 

  25. Collot J, Gradinaru J, Humbert N, Skander M, Zocchi A, Ward TR (2003) J Am Chem Soc 125:9030–9031

    Article  PubMed  CAS  Google Scholar 

  26. Letondor C, Humbert N, Ward TR (2005) Proc Natl Acad Sci USA 102:4683–4687

    Article  PubMed  ADS  CAS  Google Scholar 

  27. Komatsu T, Ohmichi N, Zunszain PA, Curry S, Tsuchida E (2004) J Am Chem Soc 126:14304–14305

    Article  PubMed  CAS  Google Scholar 

  28. Mahammed A, Gross Z (2005) J Am Chem Soc 127:2883–2887

    Article  PubMed  CAS  Google Scholar 

  29. Marchetti M, Mangano G, Paganelli S, Botteghi C (2000) Tetrahedron Lett 41:3717–3720

    Article  CAS  Google Scholar 

  30. Reetz MT, Jiao N (2006) Angew Chem Int Ed 45:2416–2419

    Article  CAS  Google Scholar 

  31. Hunter TM, McNae IW, Liang XY, Bella J, Parsons S, Walkinshaw MD, Sadler PJ (2005) Proc Natl Acad Sci USA 102:2288–2292

    Article  PubMed  ADS  CAS  Google Scholar 

  32. Aime S, Frullano L, Crich SG (2002) Angew Chem Int Ed 41:1017–1019

    Article  CAS  Google Scholar 

  33. Ishii D, Kinbara K, Ishida Y, Ishii N, Okochi M, Yohda M, Aida T (2003) Nature 423:628–632

    Article  PubMed  ADS  CAS  Google Scholar 

  34. Iwahori K, Yoshizawa K, Muraoka M, Yamashita I (2005) Inorg Chem 44:6393–6400

    Article  PubMed  CAS  Google Scholar 

  35. Kramer RM, Li C, Carter DC, Stone MO, Naik RR (2004) J Am Chem Soc 126:13282–13286

    Article  PubMed  CAS  Google Scholar 

  36. Meldrum FC, Heywood BR, Mann S (1992) Science 257:522–523

    Article  PubMed  ADS  CAS  Google Scholar 

  37. Wong KKW, Mann S (1996) Adv Mater 8:928

    Article  CAS  Google Scholar 

  38. Blum AS, Soto CM, Wilson CD, Cole JD, Kim M, Gnade B, Chatterji A, Ochoa WF, Lin TW, Johnson JE, Ratna BR (2004) Nano Lett 4:867–870

    Article  CAS  ADS  Google Scholar 

  39. Douglas T, Strable E, Willits D, Aitouchen A, Libera M, Young M (2002) Adv Mater 14:415–418

    Article  CAS  Google Scholar 

  40. Klem MT, Willits D, Solis DJ, Belcher AM, Young M, Douglas T (2005) Adv Funct Mater 15:1489–1494

    Article  CAS  Google Scholar 

  41. Mao CB, Solis DJ, Reiss BD, Kottmann ST, Sweeney RY, Hayhurst A, Georgiou G, Iverson B, Belcher AM (2004) Science 303:213–217

    Article  PubMed  ADS  CAS  Google Scholar 

  42. Casini A, Mastrobuoni G, Temperini C, Gabbiani C, Francese S, Moneti G, Supuran CT, Scozzafava A, Messori L (2007) Chem Commun 156–158

    Google Scholar 

  43. Razavet M, Artero V, Cavazza C, Oudart Y, Lebrun C, Fontecilla-Camps JC, Fontecave M (2007) Chem Commun 2007:2805–2807

    Article  CAS  Google Scholar 

  44. Hayashi T, Hisaeda Y (2002) Acc Chem Res 35:35–43

    Article  PubMed  CAS  Google Scholar 

  45. Ozaki SI, Roach MP, Matsui T, Watanabe Y (2001) Acc Chem Res 34:818–825

    Article  CAS  Google Scholar 

  46. Watanabe Y, Nakajima H, Ueno T (2007) Acc Chem Res 40:554–562

    Article  PubMed  CAS  Google Scholar 

  47. Douglas T, Young M (1998) Nature 393:152–155

    Article  ADS  CAS  Google Scholar 

  48. Douglas T, Dickson DPE, Betteridge S, Charnock J, Garner CD, Mann S (1995) Science 269:54–57

    Article  PubMed  ADS  CAS  Google Scholar 

  49. Liu XF, Theil EC (2005) Acc Chem Res 38:167–175

    Article  PubMed  CAS  Google Scholar 

  50. Yang XK, Chasteen ND (1996) Biophys J 71:1587–1595

    Article  PubMed  CAS  Google Scholar 

  51. Mackle P, Charnock JM, Garner CD, Meldrum FC, Mann S (1993) J Am Chem Soc 115:8471–8472

    Article  CAS  Google Scholar 

  52. Mann S, Meldrum FC (1991) Adv Mater 3:316–318

    Article  CAS  Google Scholar 

  53. Tsukamoto R, Iwahor K, Muraoka M, Yamashita I (2005) Bull Chem Soc Jpn :782075–2081

    Article  CAS  Google Scholar 

  54. Ueno T, Suzuki M, Goto T, Matsumoto T, Nagayama K, Watanabe Y (2004) Angew Chem Int Ed 43:2527–2530

    Article  CAS  Google Scholar 

  55. Yamashita I, Hayashi J, Hara M (2004) Chem Lett 33:1158–1159

    Article  CAS  Google Scholar 

  56. Dominguez-Vera JM, Colacio E (2003) Inorg Chem 42:6983–6985

    Article  PubMed  CAS  Google Scholar 

  57. Yang Z, Wang XY, Diao HJ, Zhang JF, Li HY, Sun HZ, Guo ZJ (2007) Chem Commun 3453–3455

    Google Scholar 

  58. Comellas-Aragones M, Engelkamp H, Claessen VI, Sommerdijk N, Rowan AE, Christianen PCM, Maan JC, Verduin BJM, Cornelissen J, Nolte RJM (2007) Nat Nanotechol 2:635–639

    Article  ADS  CAS  Google Scholar 

  59. Dujardin E, Peet C, Stubbs G, Culver JN, Mann S (2003) Nano Lett 3:413–417

    Article  CAS  ADS  Google Scholar 

  60. Lee SW, Mao CB, Flynn CE, Belcher AM (2002) Science 296:892–895

    Article  PubMed  ADS  CAS  Google Scholar 

  61. McMillan RA, Paavola CD, Howard J, Chan SL, Zaluzec NJ, Trent JD (2002) Nat Mater 1:247–252

    Article  PubMed  ADS  CAS  Google Scholar 

  62. Nam KT, Kim DW, Yoo PJ, Chiang CY, Meethong N, Hammond PT, Chiang YM, Belcher AM (2006) Science 312:885–888

    Article  PubMed  ADS  CAS  Google Scholar 

  63. Shenton W, Douglas T, Young M, Stubbs G, Mann S (1999) Adv Mater 11:253–256

    Article  CAS  Google Scholar 

  64. Varpness Z, Peters JW, Young M, Douglas T (2005) Nano Lett 5:2306–2309

    Article  PubMed  CAS  ADS  Google Scholar 

  65. Zeth K, Offermann S, Essen LO, Oesterhelt D (2004) Proc Natl Acad Sci USA 101:13780–13785

    Article  PubMed  ADS  CAS  Google Scholar 

  66. Davies RR, Distefano MD (1997) J Am Chem Soc 119:11643–11652

    Article  CAS  Google Scholar 

  67. Kruithof CA, Casado MA, Guillena G, Egmond MR, van der Kerk-van Hoof A, Heck AJR, Gebbink R, van Koten G (2005) Chem Eur J 11:6869–6877

    Article  CAS  Google Scholar 

  68. Panella L, Broos J, Jin JF, Fraaije MW, Janssen DB, Jeronimus-Stratingh M, Feringa BL, Minnaard AJ, de Vries JG (2005) Chem Commun 2005:5656–5658

    Article  CAS  Google Scholar 

  69. Ueno T, Koshiyama T, Abe S, Yokoi N, Ohashi M, Nakajima H, Watanabe Y (2007) J Organomet Chem 692:142–147

    Article  CAS  Google Scholar 

  70. Schemberg J, Schneider K, Demmer U, Warkentin E, Muller A, Ermler U (2007) Angew Chem Int Ed 46:2408–2413

    Article  CAS  Google Scholar 

  71. Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Science 303:1831–1838

    Article  PubMed  ADS  CAS  Google Scholar 

  72. Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2005) Nature 438:1040–1044

    Article  PubMed  ADS  CAS  Google Scholar 

  73. Messerschmidt A, Huber R, Poulos T, Wieghardt K (eds) (2001) Handbook of metalloproteins, vol 1. Wiley, Chichester

    Google Scholar 

  74. Karlsson A, Parales JV, Parales RE, Gibson DT, Eklund H, Ramaswamy S (2003) Science 299:1039–1042

    Article  PubMed  ADS  CAS  Google Scholar 

  75. Katona G, Carpentier P, Niviere V, Amara P, Adam V, Ohana J, Tsanov N, Bourgeois D (2007) Science 316:449–453

    Article  PubMed  ADS  CAS  Google Scholar 

  76. Kovaleva EG, Lipscomb JD (2007) Science 316:453–457

    Article  PubMed  ADS  CAS  Google Scholar 

  77. Schlichting I, Berendzen J, Chu K, Stock AM, Maves SA, Benson DE, Sweet BM, Ringe D, Petsko GA, Sligar SG (2000) Science 287:1615–1622

    Article  PubMed  ADS  CAS  Google Scholar 

  78. Unno M, Chen H, Kusama S, Shaik S, Ikeda-Saito M (2007) J Am Chem Soc 129:13394–13395

    Article  PubMed  CAS  Google Scholar 

  79. Koshiyama T, Yokoi N, Ueno T, Kanamaru S, Nagano S, Shiro Y, Arisaka F, Watanabe Y (2008) Small 450–54

    Article  PubMed  CAS  Google Scholar 

  80. Ueno T, Koshiyama T, Tsuruga T, Goto T, Kanamaru S, Arisaka F, Watanabe Y (2006) Angew Chem Int Ed 45:4508–4512Small

    Article  CAS  Google Scholar 

  81. Uchida M, Flenniken ML, Allen M, Willits DA, Crowley BE, Brumfield S, Willis AF, Jackiw L, Jutila M, Young MJ, Douglas T (2006) J Am Chem Soc 128:16626–16633

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihito Wantanable .

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London

About this chapter

Cite this chapter

Abe, S., Ueno, T., Wantanable, Y. (2008). Artificial Metalloproteins Exploiting Vacant Space: Preparation, Structures, and Functions. In: Topics in Organometallic Chemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3418_2008_4

Download citation

  • DOI: https://doi.org/10.1007/3418_2008_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

Publish with us

Policies and ethics