Skip to main content
Book cover

pp 1–40Cite as

Chain Shuttling Catalysis and Olefin Block Copolymers (OBCs)

  • Chapter
  • First Online:

Part of the book series: Topics in Organometallic Chemistry

Abstract

Olefin block copolymers (OBCs) with new-to-the-world properties have recently been made via a process called chain shuttling polymerization. These systems comprise two or more catalysts with differing affinities for comonomer combined with a chain shuttling agent (CSA), which distributes the growing polymer chains among the various catalysts. The result is a unique block copolymer, with statistically distributed block sizes and numbers of blocks per chain. A unique property of the materials is that the melting temperature is nearly independent of the comonomer incorporation, which breaks a seemingly immutable relationship that was long held to be true.

This is a preview of subscription content, log in via an institution.

Abbreviations

CSA:

Chain shuttling agent

OBC:

Olefin block copolymer

LDPE:

Low density polyethylene

LLDPE:

Linear low density polyethylene

VLDPE:

Very low density polyethylene

ULDPE:

Ultra-low density polyethylene

HDPE:

High density polyethylene

PE:

Polyethylene

PP:

Polypropylene

iPP:

Isotactic polypropylene

aPP:

Atactic polypropylene

sPP:

Syndiotactic polypropylene

LAO:

Linear alpha olefin

f-PVC:

Flexible polyvinylchloride

TPU:

Thermoplastic polyurethane

TPV:

Thermoplastic vulcanizate

CCG:

Catalyzed chain growth

CTA:

Chain Transfer Agent

CCTP:

Coordinative chain transfer polymerization

TiBA:

Triisobutylaluminum

TMA:

Trimethylaluminum

TEA:

Triethylaluminum

MAO:

Methylalumoxane

MMAO:

Modified methylalumoxane

DEZ:

Diethylzinc

oct:

Octyl

poly:

Polymeryl

HS:

Hard segment

SS:

Soft segment

GPC:

Gel-permeation chromatography

Mn:

Number-average molecular weight

Mw:

Weight-average molecular weight

Mw/Mn:

Molecular weight distribution

DSC:

Differential scanning calorimetry

CRYSTAF:

Crystallization analysis fractionation

TREF:

Temperature rising elution fractionation

References

  1. Vasile C, (2000) Handbook of polyolefins, 2nd edn. Marcel Dekker, New York

    Book  Google Scholar 

  2. Boor JJ, (1979) Ziegler–Natta catalysts and polymerizations. Academic, New York

    Google Scholar 

  3. Kaminsky W, (2004) J Poly Sci A Poly Chem 42:3911–3921

    Article  CAS  Google Scholar 

  4. Gibson VC, Spitzmesser SK (2003) Chem Rev 103(1):283–315

    Article  PubMed  CAS  Google Scholar 

  5. Benham E, McDaniel M (2006) Polyethylene, high density (HDPE). In: Kirk-Othmer encyclopedia of chemical technology, vol 20, 5th edn. Wiley, New York, pp 149–179

    Google Scholar 

  6. Maraschin N (2006) Polyethylene, low density (LDPE). In: Kirk-Othmer encyclopedia of chemical technology, vol 20, 5th edn. Wiley, New York, pp 211–239

    Google Scholar 

  7. Kissin YV (2006) Polyethylene, linear low density (LLDPE). In: Kirk–Othmer encyclopedia of chemical technology, vol 20, 5th edn. Wiley, New York, pp 179–211

    Google Scholar 

  8. Flory PJ, (1956) Science 124:53–60

    Article  PubMed  ADS  CAS  Google Scholar 

  9. Holden G, (2000) Thermoplastic elastomers and their applications. In: Craver C Carraher (eds)C, Applied polymer science: 21st century. Elsevier, Amsterdam, pp 231–256

    Chapter  Google Scholar 

  10. Arriola DJ, Carnahan EM, Hustad PD, Kuhlman RL, Wenzel TT (2006) Science 312:714–719

    Article  PubMed  ADS  CAS  Google Scholar 

  11. Hustad PD, Kuhlman RL, Arriola DJ, Carnahan EM, Wenzel TT (2007) Macromolecules 40:7061–7064

    Article  CAS  ADS  Google Scholar 

  12. Natta G, Pasquon I, (1959) Adv Catal 11:1–65

    Article  CAS  Google Scholar 

  13. Samsel EG, Eisenberg DC (1994) US patent 5,276,220

    Google Scholar 

  14. Samsel EG (1993) US patent 5,210,338

    Google Scholar 

  15. Samsel EG, Brooks FN (2002) US patent 6,444,867

    Google Scholar 

  16. Britovsek GJP, Cohen SA, Gibson VC, Van Meurs M (2004) J Am Chem Soc 126:10701–10712 US patent 5,276,220

    Article  PubMed  CAS  Google Scholar 

  17. Kempe R, (2007) Chem Eur J 13:2764–2773

    Article  CAS  Google Scholar 

  18. Bhriain NN, Brintzinger H-H, Ruchatz D, Fink G (2005) Macromolecules 38:2056–2063

    Article  CAS  ADS  Google Scholar 

  19. Wei Z, Sita LR (2008) J Am Chem Soc 130:442–443

    Article  CAS  Google Scholar 

  20. Chien JCW, Iwamoto Y, Rausch MD, Wedler W, Winter HH (1997) Macromolecules 30:3447–3458

    Article  CAS  ADS  Google Scholar 

  21. Chien JCW, Iwamoto Y, Rausch MD (1999) J Polym Sci Part A Poly Chem 37:2439–2445

    Article  CAS  ADS  Google Scholar 

  22. Przybyla C, Fink G (1999) Acta Polym 50:77–83

    Article  CAS  Google Scholar 

  23. Song W, Uy Z, Chien JCW (1996) J Organomet Chem 512:131–140

    Article  CAS  Google Scholar 

  24. Song W, Yu Z Chien JCW (1998) J Organomet Chem 558:223–226

    Article  CAS  Google Scholar 

  25. Lieber R, Brintzinger H-H (2000) Macromolecules 33:9192–9199

    Article  CAS  ADS  Google Scholar 

  26. Hazlitt LG, Moldovan DG, (1989) US patent 4,798,081

    Google Scholar 

  27. Hazlitt LG, (1990) J Appl Polym Sci Appl Polym Symp 45:25–37US patent 4,798,081

    Article  CAS  Google Scholar 

  28. Kukral J, Lehmus P Klinga M Leskelä M Rieger B (2002) Eur J Inorg Chem 2002:1349–1356

    Article  Google Scholar 

  29. Hild S, Cobzaru C Troll C Rieger B (2006) Macromol Chem Phys 207:665–683

    Article  CAS  Google Scholar 

  30. Bruaseth I, Rytter E (2003) Macromolecules 36:3026–3034

    Article  CAS  ADS  Google Scholar 

  31. Bruaseth I, Soares JBP Rytter E (2004) Polymer 45:7853–7861

    Article  CAS  Google Scholar 

  32. Tynys A, Eilertsen JL Seppala JV Rytter E (2007) J Poly Sci A Poly Chem 45:1364–1376

    Article  CAS  Google Scholar 

  33. Alfano F, Boone HW Busico V Cipullo R Stevens JC (2007) Macromolecules 40:7736–7738

    Article  CAS  ADS  Google Scholar 

  34. Ray WH, (1972) J Macromol Sci-Revs Macromol Chem C8:1–56

    Google Scholar 

  35. Hustad PD, Kuhlman RL Carnahan EM Wenzel TT Arriola DJ (2008) Macromolecules 41:4081–4089

    Article  CAS  ADS  Google Scholar 

  36. Murphy V, Bei X Boussie TR Brummer O Diamond GM Goh C Hall KA Lapointe AM Leclerc M Longmire JM Shoemaker JAW Turner H Weinberg WH (2002) Chem Rec2:278–289

    Article  PubMed  CAS  Google Scholar 

  37. Odian G, (2004) Principles of polymerization, 4th edn. Wiley, Hoboken, NJ

    Book  Google Scholar 

  38. Mayo FR Lewis FM (1944) J Am Chem Soc 66:1594–1601

    Article  CAS  Google Scholar 

  39. Makio H Kashiwa N Fujita T (2002) Adv Synth Cat 344:477

    Article  CAS  Google Scholar 

  40. Boussie TR, Diamond GM, Goh C, Hall KA, LaPointe AM, Leclerc MK, Murphy V, Shoemaker JAW, Turner H, Rosen RK, Stevens JC, Alfano F, Busico V, Cipullo R, Talarico G (2006) Angew Chem Int Ed 45:3278–3283

    Article  CAS  Google Scholar 

  41. Frazier KA, Boone HW, Vosejpka PC, Stevens JC (2004) US patent 2004/0220050

    Google Scholar 

  42. Kuhlman RL, Wenzel TT (2008) Macromolecules 41:4090–4094 US patent 2004/0220050

    Article  CAS  ADS  Google Scholar 

  43. Minick J, Moet A, Hiltner A, Baer E, Chum SP (1995) J Appl Polym Sci 58:1371–1384

    Article  CAS  Google Scholar 

  44. Bensason S, Stepanov EV, Chum S, Hiltner A, Baer E (1997) Macromolecules 30:2436–2444

    Article  CAS  ADS  Google Scholar 

  45. Wang HP, Khariwala DU, Cheung W, Chum SP, Hiltner A, Baer E (2007) Macromolecules 40:2852–2862

    Article  CAS  ADS  Google Scholar 

  46. Li Pi Shan C, Hazlitt LG (2007) J Macromol Symp 257:80–93

    Article  CAS  Google Scholar 

  47. Karande SV, Chueng YW, Diehl CF, Levinson MJ (2006) In: Proceedings 64th SPE annual technical conference, 7–11 May 2006, Charlotte, NC. Society of Plastics Engineers, Brookfield, CT

    Google Scholar 

Download references

Acknowledgments

We thank David Devore, David Graf, Pamela Stirn, Marilyn Bokota, Daryoosh Beigzadeh, Robert Froese, Chris Schultz, Mike Allen, Curt Theriault, Gordon Roof, Tom Karjala, Min Zhang, Lindsey Miller, Jan Bazen, Colin Li Pi Shan, Wilson Cheung, James Stevens, Ben Poon, and Gary Marchand for their hard work and many helpful discussions .

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Timothy T. Wenzel or Edmund M. Carnahan .

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London

About this chapter

Cite this chapter

Wenzel, T., Arriola, D., Carnahan, E., Hustad, P., Kuhlman, R. (2008). Chain Shuttling Catalysis and Olefin Block Copolymers (OBCs). In: Topics in Organometallic Chemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3418_2008_11

Download citation

  • DOI: https://doi.org/10.1007/3418_2008_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

Publish with us

Policies and ethics