Skip to main content

Multiphase Catalysis in Temperature-Dependent Multi-Component Solvent (TMS) Systems

  • Chapter
  • First Online:
Regulated Systems for Multiphase Catalysis

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 23))

Abstract

The use of temperature-dependent multi-component solvent-systems (TMS) as a new recycling conceptwas investigated. The temperature dependency of the solvent systems and suitable compositions for variousreactions were determined by cloud titrations. The results were summarized in an expert system for thesolvent selection. Appropriate thermomorphic solvent systems were applied to different C − Cbond-forming reactions: the telomerization of butadiene with ethylene glycol or with carbon dioxide, theisomerizing hydroformylation of trans-4-octene and the hydroaminomethylationof 1-octene with morpholine. In further investigations the carboxytelomerization and the synthesis of 4-nitrodiphenylaminewere examined. Especially, if the polarity of the reaction mixture remains constant, high conversions ofthe substrates and high selectivities can be achieved. Thus, for the hydroformylation the conversion reachesa level of 99% and a selectivity to n-nonanal of about 80%in the TMS system propylene carbonate (PC)/dodecane/N-methylpyrrolidone(NMP). Similar results are obtained for the hydroaminomethylation: if N-octylpyrrolidoneis used as a mediator the conversion of 1-octene and the selectivity of the corresponding amines reach92%. For both reactions the catalyst can be easily recovered by a simple phase separation with onlymarginal loss of rhodium catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

acac:

acetylacetonate

ad:

adamantyl

bis-mes-IM:

1,3-bis(mesitylene)imidazolium chloride

cod:

cyclooctadiene

CST:

critical solution temperature

DMF:

dimethylformamide

DMSO:

dimethyl sulfoxide

dvds:

1,3-divinyltetramethyldisiloxane

EC:

ethylene carbonate

HSP:

Hansen solubility parameter

ICP-OES:

inductively coupled plasma optical emission spectroscopy

IPA:

isopropyl alcohol

MCH:

methylcyclohexyl

MDPP:

methyl polyethylene glycol diphenylphosphine

MA:

maleic anhydride

NBP:

N-benzylpyrrolidone

NCP:

N-cyclohexylpyrrolidone

NEP:

N-ethylpyrrolidone

NMP:

N-methylpyrrolidone

NOP:

N-octylpyrrolidone

OAc:

acetate

PC:

propylene carbonate

PEG:

polyethylene glycol

PETPPO:

polyethylene glycol triphenylphosphine oxide

PF:

perfluoro-prod., product

PVC:

polyvinyl chloride

rpm:

rotations per minute

Rf x :

-C x F2 x +1

THF:

tetrahydrofuran

TMS system:

temperature dependent or thermomorphic multi-component solvent system

TPPMS:

triphenylphosphine-3-sulfonic acid lithium salt

TPPTS:

triphenylphosphine-3,3′,3′′-trisulfonic acid trisodium salt

References

  1. Cornils B, Herrmann WA (2002) Applied Homogeneous Catalysis with Organometallic Compounds. Vol 1–3, 2nd edn. Wiley, Weinheim

    Book  Google Scholar 

  2. Behr A, Toslu N (1999) Chem Ing Tech 71:490

    Article  CAS  Google Scholar 

  3. Behr A, Toslu N (2000) Chem Eng Technol 23:122

    Article  CAS  Google Scholar 

  4. Behr A, Fängewisch C (2001) Chem Ing Tech 73:874

    Article  CAS  Google Scholar 

  5. Behr A, Fängewisch C (2002) Chem Eng Technol 25:143

    Article  CAS  Google Scholar 

  6. Behr A, Urschey M (2003) J Mol Catal A: Chem 197:101

    Article  CAS  Google Scholar 

  7. Behr A, Urschey M, Brehme VA (2003) Green Chemistry 5:198

    Article  CAS  Google Scholar 

  8. Behr A, Urschey M (2003) Adv Synth Catal 345:1242

    Article  CAS  Google Scholar 

  9. Behr A, Roll R (2005) Chem Ing Tech 77:748

    Article  CAS  Google Scholar 

  10. Reichhardt C (2003) Solvents und Solvent Effects in Organic Chemistry. 3rd edn. Wiley, Weinheim, p 411

    Google Scholar 

  11. Tilloy S, Bertoux F, Mortreux A, Monflier E (1999) Catal Today 48:245

    Article  CAS  Google Scholar 

  12. Monflier E, Fremy G, Castanet Y, Mortreux A (1995) Angew Chem Int Ed Eng 34:2269

    Article  CAS  Google Scholar 

  13. Mathivet T, Méliet C, Castanet Y, Mortreux A, Caron L, Tilloy S, Monflier E (2001) J Mol Catal A: Chem 176:105

    Article  CAS  Google Scholar 

  14. Monflier E, Bricout H, Hapiot F, Tilloy S, Aghmiz A, Masdeu-Bultó AM (2004) Adv Synth Catal 346:425

    Article  CAS  Google Scholar 

  15. Behr A, Juszak KD, Keim W (1983) Synthesis 7:574

    Article  Google Scholar 

  16. Behr A, Heite M (2000) Chem Eng Technol 23:952

    Article  CAS  Google Scholar 

  17. Behr A, Heite M (2000) Chem Ing Tech 72:57

    Google Scholar 

  18. Behr A, Brehme VA (2002) J Mol Catal A: Chem 187:69

    Article  CAS  Google Scholar 

  19. Behr A, Bahke P, Becker M (2004) Chem Ing Tech 76:1828

    Article  CAS  Google Scholar 

  20. Weissermel K, Arpe HJ (2003) Industrial Organic Chemistry. 4th edn. Wiley, Weinheim

    Book  Google Scholar 

  21. van Leeuwen PWNM (2000) Rhodium Catalyzed Hydroformylation. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  22. http://www.kitco.com/charts/rhodium.html , Kitco Inc.—Precious Metals, 2004

  23. Behr A, Obst D, Schulte C, Schosser T (2003) J Mol Catal A: Chem 197:115

    Article  CAS  Google Scholar 

  24. Behr A, Obst D, Turkowski B (2005) J Mol Catal A: Chem 226:215

    Article  CAS  Google Scholar 

  25. Behr A, Henze G, Turkowski B, Obst D (2005) Green Chemistry 7:645

    Article  CAS  Google Scholar 

  26. Hildebrand J, Scott RL (1950) The Solubility of Nonelectrolytes. 3rd edn. Reinhold, New York

    Google Scholar 

  27. Hildebrand J, Scott RL (1962) Regular Solutions. Prentice-Hall Inc., Englewood Cliffs, NJ

    Google Scholar 

  28. Hansen CM (1967) The Three Dimensional Solubility Parameter – Key to Paint Component Affinities I. J Paint Technol 39:104

    CAS  Google Scholar 

  29. Hansen CM (1967) The Three Dimensional Solubility Parameter – Key to Paint Component Affinities II–III. J Paint Technol 39:505

    CAS  Google Scholar 

  30. Hansen CM (2000) Hansen Solubility Parameters: a User's Handbook. CRC Press, Boca Raton, Florida

    Google Scholar 

  31. Barton AFM (1983) Handbook of Solubility Parameters and Other Cohesion Parameters. CRC Press, Boca Raton, Florida

    Google Scholar 

  32. Cheremisinoff NP (2003) Industrial Solvents Handbook, 2nd edn. Marcel Dekker, New York

    Book  Google Scholar 

  33. Eilbracht P, Bärfacker L, Buss C, Hollmann C, Kitsos-Rzychon BE, Kranemann CL, Rische T, Roggenbuck R, Schmidt A (1999) Chem Rev 99:3329

    Article  CAS  Google Scholar 

  34. Seayed A, Ahmed M, Klein H, Jackstell R, Gross T, Beller M (2002) Science 297:1676

    Article  Google Scholar 

  35. Achmed M, Seayad A, Jackstell R, Beller M (2003) J Am Chem Soc 12:10311

    Article  Google Scholar 

  36. Rische T, Eilbracht P (1997) Synthesis 11:1331

    Article  Google Scholar 

  37. Rische T, Kitsos-Rzychon B, Eilbracht P (1998) Tetrahedron 54:2723

    Article  CAS  Google Scholar 

  38. Rische T, Bärfacker L, Eilbracht P (1999) Eur J Org Chem 3:653

    Article  Google Scholar 

  39. Behr A, Fiene M, Buss C, Eilbracht P (2000) Eur J Lipid Sci Technol 102:467

    Article  CAS  Google Scholar 

  40. Behr A, Roll R (2005) J Mol Catal A: Chem 239:180

    Article  CAS  Google Scholar 

  41. Behr A, Ott R, Turkowski B (2003) XXXVI. Jahrestreffen Deutscher Katalytiker, Weimar Tagungsband: 449

    Google Scholar 

  42. Behr A, Schöbel R, Roll R (2005) XXXVIII. Jahrestreffen Deutscher Katalytiker, Weimar Tagungsband: 381

    Google Scholar 

  43. Berg L, Harrison JM, Ewell RH (1944) Ind Eng Chem 36:871

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Prof. Dr. Leitner (RWTH Aachen) for the supply of PEG-modified ligands and Prof. Dr. Gladysz (University of Erlangen-Nürnberg) and Prof. Dr. Dinjus (FZ Karlsruhe) for the donation of fluorous ligands.

We are very grateful to Umicore AG and Co. KG for the supply of the rhodium and palladium catalysts and to BASF AG for the donation of carbon monoxide and syngas. We also thank Celanese AG and European Oxo GmbH for the supply of TPPTS solution. We would like to thank the Bundesministerium für Bildung und Forschung (ConNeCat-project “Smart Solvents—Smart Ligands”) and the “Fonds der Chemischen Industrie” for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arno Behr .

Editor information

Walter Leitner Markus Hölscher

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Behr, A., Turkowski, B., Roll, R., Schöbel, R., Henze, G. (2006). Multiphase Catalysis in Temperature-Dependent Multi-Component Solvent (TMS) Systems. In: Leitner, W., Hölscher, M. (eds) Regulated Systems for Multiphase Catalysis. Topics in Organometallic Chemistry, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3418_2006_057

Download citation

Publish with us

Policies and ethics