Skip to main content

Multiphase Catalysis in Industry

  • Chapter
  • First Online:

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 23))

Abstract

During the past two decades a variety of transition-metal catalyzed reactions have been introducedin synthetic organic chemistry. Among the most popular examples are asymmetric oxidations and reductionsand a variety of cross-coupling reactions to form C − C and C-heteroatom bonds. Examples are the Heck reaction, Suzuki–Kumadaand Sonagashira coupling reactions and the aryl-aminations introduced by Buchwald and Hartwig.

These reactions are homogeneously catalyzed using a metal complex containing expensive metalsand ligands many of which are difficult to synthesize. In most cases the catalysts are very efficient,therefore quite often only millimolar amounts or less are applied. This portfolio of new reactions wasintroduced into lab-scale synthesis within a few years of their discovery and is today frequently usedfor first syntheses of active pharmaceutical ingredients and other high-value fine chemicals. Protocolsfor the use of these reactions in very small-scale combinatorial synthesis have been developed and moreand more hits and later on development products resulted from these efforts. Pharmaceutical products need,because of the intensive and time-consuming clinical development, up to ten years until the first industrial-scaleproduction has to be scheduled. As part of the process development a method to fully separate thecatalyst components from the products after the reaction has to be worked out. Only extremely small residuesof metals or of ligands are tolerated in active pharmaceutical ingredients (APIs). The concentration ofmetals such as Pt, Pd, Ir, Rh, Ru or Os has been limited to 5 ppm by the recommendations of the EuropeanAgency for the Evaluation of Medicinal Products (EMEA) [1].A variety of methods can be applied to fulfil these requirements (as exemplified for palladium in [2] ).

Besides environmental and health criteria, cost considerations also motivate the development of processeswhich enable the separation and reuse of the catalyst complex after the reaction. Chiral ligands or ligandsfrequently used for cross-coupling reactions are difficult to synthesize and only some ten's of kilogramsare needed even for the production of many tons of a final product. Both the demanding synthesis andthe production in kg-labs or small pilot plants makes these ligands very expensive. Prices ranging from2000 to 100000 $/kg and more are quite common [3].Both ecological and economical constraints force chemical and pharmaceutical industries to establish processesfor the separation of the catalyst after the reaction to achieve a multiple use of the catalysts.

Phase separation during or after a reaction is a proven method in chemical industry forthe extraction of a chemical compound. It has also been successfully introduced into large-scale catalysisprocesses [4, 5]mainly using systems with one aqueous and one organic phase. Typical catalysts for enantioselective orcross-coupling reactions normally are soluble in organic solvents only, just like the products of the reaction.Therefore, these proven systems cannot be applied in these cases. All these reasons have led to an increasinginterest in new solvent systems for homogeneously catalyzed reactions: Supercritical fluids [6], ionic liquids [7], thermomorphicsolvents [8, 9]and fluorous phases [10] are the most widely studied new“green” solvents that open a door for a wide variety of applications in organic chemistry.Each one seems to have a promising potential for industrial use. What is missing is the experiencewith their use, a better knowledge about scope and limitation of the systems and in particular a breakthroughin large-scale application. In the same way as a new catalyst system normally needs many years oflab experience until a first technical use arises, new solvents will also need this time period priorto their first use at the ton or multi-ton scale.

The ConNeCat (ConNeCat is the German Competence Network Catalysis; http://www.connecat.de) lighthouseproject “Regulated Systems for Muliphase Catalysis—Smart Solvents/Smart Ligands” whichwas funded by the German Ministry of Research and Education (BMBF) provided the opportunity to gain importantscientific and technical experience with the new solvent systems. Seven academic groups and four industrialpartners got the chance to modify and validate these new solvent systems within core processes of the fourcompanies. Basic aspects and new concepts could be worked out at the universities and research institutes.The industrial groups compared the new technologies with the state of the art and pointed towards the large-scaleapplicability. Several examples for the use of the new multiphase systems in homogeneous catalysis havebeen worked out. Each of the four systems investigated shows promise for industrial use, but —ascould be expected—every single system has different applications and limitations. This review summarizessome of the main results of this research network together with selected parallel developments from theliterature taking an industrial point of view.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Note for Guidance on Specification Limits for Residues of Metal Catalysts, Evaluation of Medicines for Human Use (2002) The European Agency for the Evaluation of Medicinal Products, London, http://www.emea.en.int

  2. Christine E, Garrett H (2004) Adv Synth Catal 346:889

    Article  Google Scholar 

  3. Blaser HU (2006) In: de Vries J, Cornelis J (eds) The Handbook of Homogeneous Hydrogenation. Wiley, Weinheim

    Google Scholar 

  4. Cornils B, Herman WA (eds) (2002) Applied Homogeneous Catalysis with Organometallic Compounds, 2nd edition. Wiley, Weinheim

    Book  Google Scholar 

  5. Vogt D, Horath J, Olivier-Bourbigou H, Leitner W, Mecking S (2005) In: Cornils B, Hermann WA (eds) Multiphase Homogeneous Catalysis. Wiley, Weinheim

    Google Scholar 

  6. Leitner W (2002) Accounts of Chemical Research 35:746

    Article  CAS  Google Scholar 

  7. Wasserscheid P, Welton T (eds) (2003) Ionic Liquids in Synthesis. Wiley, Weinheim

    Google Scholar 

  8. Bergbreiter DE (2002) Chem Rev 102:3345

    Article  CAS  Google Scholar 

  9. Jin Z, Wang Y, Zheng X (2004) In: Cornils B, Hermann WA (eds) Aqueous-Phase Organometallic Catalysis. 2nd edition. Wiley, Weinheim, p 301

    Google Scholar 

  10. Curran DP (1998) Angew Chem Int Ed Engl 37:1174

    Article  Google Scholar 

  11. Sheldon R (2001) Chem Commun, p 2399

    Google Scholar 

  12. Holbrey JD, Seddon KR (1999) Clean Products and Processes. Springer, Berlin Heidelberg New York, 1:223–236

    Google Scholar 

  13. Holbrey JD (2004) Chem Today 22:35

    CAS  Google Scholar 

  14. van Rantwijk F, Lan RM, Sheldon RA (2003) Trends Biotechnol 21:131

    Article  Google Scholar 

  15. Eckstein M, Villeta Filko M, Liese M, Kragl U (2004) Chem Commun, p 1084

    Google Scholar 

  16. Pfründer H, Amidjojo M, Kragl U, Wenster-Bolz D (2004) Angew Chem Int Ed 43:4529

    Article  Google Scholar 

  17. Song C (2004) Chem Commun, p 1033

    Google Scholar 

  18. Forsyth StA, Pringle JM, MacFarlane DR (2004) Anst J Chem 57:113

    Article  CAS  Google Scholar 

  19. Chauvin Y, Gilbert B, Giubard I (1990) Chem Commun, p 1715

    Google Scholar 

  20. Seddon KR (2003) Nat Mat 2:363

    Article  CAS  Google Scholar 

  21. Goldschmidt AG, EP 1 382 630 A1

    Google Scholar 

  22. Weyershausen B, Hell K, Hesse U (2003) ACS National Meeting, Sept. 8, New York

    Google Scholar 

  23. Weyershausen B, Wehmann K (2004) Green Solvents for Synthesis. Bruchsal, Germany

    Google Scholar 

  24. Holbrey JD, Seddon KR (1999) Clean Technol Environ Pol, p 223

    Google Scholar 

  25. Wagner M (2005) Chem Today 23:24

    Google Scholar 

  26. Jarstorff Bl, Stoermann R, Ranke J, Moelter K, Stock F, Oberheitermann B, Hoffmann W, Hoffmann J (2003) Green Chem 5:136

    Article  Google Scholar 

  27. Wasserscheid P, Maase M (2003) Chem Ing Tech 75:1150

    Article  CAS  Google Scholar 

  28. Riisager A, Fehrmann R, Flicker S, van Hal R, Haumann M, Wasserscheid P (2005) Angew Chem Int Ed 44:815

    Article  CAS  Google Scholar 

  29. Mehnert CP (2005) Chem Eur J 11:14

    Article  Google Scholar 

  30. Bergbreiter DE (2002) Chem Rev 102:3345

    Article  CAS  Google Scholar 

  31. Bergbreiter DE, Chandran R (1987) J Am Chem Soc 109:174

    Article  CAS  Google Scholar 

  32. Bergbreiter DE, Zhang L, Mariagnanam VM (1983) J Am Chem Soc 115:9295

    Article  Google Scholar 

  33. Karakhanor EA, Runova EA, Berezkin GV, Meimerovets EB (1994) Macromol Symp 80:231

    Article  Google Scholar 

  34. Jin Z, Zheng X (1996) Thermoregulated Phase-transfer Catalysis. In: Cornils B, Hermann WA (eds) Aqueous-Phase Organometallic Catalysis, Chap. 4, Sect. 6.3. Wiley, Weinheim, p 233

    Google Scholar 

  35. Behr A, Fängewisch C (2001) Chem Ing Tech 73:874

    Article  CAS  Google Scholar 

  36. Bergbreiter DE (2001) J Polm Science Polym Chem Ed 39:2352

    Google Scholar 

  37. Zosel K (1978) Angew Chem Int Ed Engl 17:702

    Article  Google Scholar 

  38. McCoy M (1999) Chem Eng News 77:11

    Google Scholar 

  39. Pickel KH, Steiner K (1994) Proc 3rd Int Symp Supercritical Fluids, Strasbourg, France, p 25

    Google Scholar 

  40. Freemantle M (2001) Chem Eng News 79:30

    Google Scholar 

  41. Devetta L (1999) Catal Today 48:337

    Article  CAS  Google Scholar 

  42. Licence P, Ke J, Sokolova M, Ross SK, Poliakoff M (2003) Green Chem 5:99

    Article  CAS  Google Scholar 

  43. Koch D, Leitner W (1998) J Am Chem Soc 120:13398

    Article  CAS  Google Scholar 

  44. Jessop PG, Ikarya T, Noyori R (1995) Chem Rev 95:259

    Article  CAS  Google Scholar 

  45. Cole-Hamilton DJ (2003) Science 299:1702

    Article  CAS  Google Scholar 

  46. Fürstner A, Leitner W, Koch D (1997) Angew Chem Int Ed Engl 36:2466

    Article  Google Scholar 

  47. Cornils B, Herrmann WA (1998) Aqueous Organometallic Catalysis. Wiley, Weinheim

    Google Scholar 

  48. Leitner W (1999) In: Knochel P (ed) Reactions in Supercritical Carbon Dioxide (scCO2) in Modern Solvent Systems. Top Curr Chem 206:107

    Google Scholar 

  49. Morita DK, David SK (1998) Chem Commun, p 1397

    Google Scholar 

  50. Wegner A, Leitner W (1999) Chem Commun, p 1583

    Google Scholar 

  51. Sellin M, Cole-Hamilton DJ (2000) J Chem Soc, Dalton Trans, p 1681

    Google Scholar 

  52. Solinas M, Pfaltz A, Leitner W (2004) J Am Chem Soc 126:16124

    Article  Google Scholar 

  53. Leitner W, Scurto AM (1998) Imobilization of Organometallic Catalysts using Supercritical Fluids. In: Cornils B, Herrmann WA (eds) Aqueous Organometallic Catalysis. Wiley, Weinheim, p 664

    Google Scholar 

  54. Solinas M, Leitner W (2005) Angew Chem Int Ed 44:1346

    Article  Google Scholar 

  55. Mc Carthy M, Stemmer H, Leitner W (2002) Green Chem 4:501

    Article  CAS  Google Scholar 

  56. Burgemeister K, Franciò G, Hugl H, Leitner W (2005) Chem Commun, p 6026

    Google Scholar 

  57. Verspui G, Elbertse G (2000) Chem Commun, p 1363

    Google Scholar 

  58. Verspui G, Papadogianakis (2001) J Organomet Chem 621:337

    Google Scholar 

  59. Dahmen N, Griesheimer P, Makarczyk P, Pitter S (2005) J Organomet Chem 690:1467

    Article  CAS  Google Scholar 

  60. Merk HF (2002) Zeitschrift für Hautkrankheiten 77:466

    Article  Google Scholar 

  61. Chan WC, Lau CP (1994) J Organomet Chem 464:103

    Article  CAS  Google Scholar 

  62. Bricout H, Mortreux A (1998) J Organomet Chem 553:469

    Article  CAS  Google Scholar 

  63. Hildebrandt J, Prausnitz JM (1970) In: Van Nostrand R (ed) Regular and Related Solutions, Chap 10. New York

    Google Scholar 

  64. Horvath I (1998) Flourous Phases. In: Cornils B, Herrmann WA (eds) Aqueous Organometallic Catalysis. Wiley, Weinheim, p 549

    Google Scholar 

  65. Fell B, Jin Z (1997) J Mol Catal A 116:55

    Article  Google Scholar 

  66. Jin Z, Fell B (1996) J Prakt Chem 338:124

    Article  CAS  Google Scholar 

  67. Bergbreiter DE (2000) J Am Chem Soc 122:9058

    Article  CAS  Google Scholar 

  68. Horvath I, Rabai J (1994) Science 266:72

    Article  CAS  Google Scholar 

  69. Horvath I (1995) EP 633062 A1

    Google Scholar 

  70. Horvath I, Gladysz JA (1996) 10th Int Symp on Homogeneous Catalysis, Princton, USA, Abstract p A59

    Google Scholar 

  71. Vogt M (1991) PhD thesis, Rheinisch Westfälische Technische Hochschule Aachen, Germany

    Google Scholar 

  72. Schwaab K (2004) Bericht des Bundesumweltamtes, p 175

    Google Scholar 

  73. Leitner W (2003) In: Desimone JM, Tumas W (eds) Green Chemistry using Liquid and Supercritical Carbon Dioxide. Oxford University Press, Oxford, pp 81–102

    Google Scholar 

  74. Herrmann WA, Reisinger CP (1998) C -C-Coupling by Heck-type-Reactions. In: Cornils B, Herrmann WA (eds) Aqueous Organometallic Catalysis. Wiley, Weinheim, p 383

    Google Scholar 

  75. Kuntz EG (1987) Chemtech, p 570

    Google Scholar 

  76. Prinz T, Driessen-Hölscher B (1999) Chem Eur J

    Google Scholar 

  77. Prinz T, Keim W, Driessen-Hölscher B (1996) Angew Chem 108:1835

    Article  Google Scholar 

  78. Baerns M, Hoffmann H, Renken A (2002) Chemische Reaktionstechnik. Wiley, Weinheim, p 67

    Google Scholar 

  79. Horvath I (1990) Catal Lett 6:43

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert Hugl .

Editor information

Walter Leitner Markus Hölscher

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hugl, H., Nobis, M. (2006). Multiphase Catalysis in Industry. In: Leitner, W., Hölscher, M. (eds) Regulated Systems for Multiphase Catalysis. Topics in Organometallic Chemistry, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3418_044

Download citation

Publish with us

Policies and ethics