Skip to main content

Catalytic SILP Materials

  • Chapter
  • First Online:
Regulated Systems for Multiphase Catalysis

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 23))

Abstract

The principle of catalytic SILP materials involves surface modification of a porous solid materialby an ionic liquid coating. Ionic liquids are salts with melting points below 100°C, generally characterizedby extremely low volatilities. In the examples described in this paper, the ionic liquid coating containsa homogeneously dissolved Rh-complex and constitutes a uniform, thin film, which itself displaysthe catalytic reactivity in the system. Continuous fixed-bed reactor technology has been applied successfullyto demonstrate the feasibility of catalytic SILP materials for propene hydroformylation and methanol carbonylation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Holbrey JD, Seddon KR (1999) Clean Prod Proc 1:223

    Google Scholar 

  2. Welton T (1999) Chem Rev 99:2071

    Article  CAS  Google Scholar 

  3. Dupont J, Consorti CS, Spencer J (2000) J Braz Chem Soc 11:337

    CAS  Google Scholar 

  4. Sheldon R (2001) Chem Commun 23:2399

    Article  Google Scholar 

  5. Olivier-Bourbigou H, Magna L (2002) J Mol Catal A: Chem 182–183:419

    Article  Google Scholar 

  6. Stenzel O, Raubenheimer HG, Esterhysen C (2002) J Chem Soc Dalton Trans, p 1132

    Google Scholar 

  7. Zhao H, Malhotra SV (2002) Aldrichimica Acta 35:75

    Article  CAS  Google Scholar 

  8. Welton T (2004) Coord Chem Rev 248:2459

    Article  CAS  Google Scholar 

  9. Earle MJ, Esperanca JMMS, Gilea MA, Conongia Lopes JN, Rebelo LPN, Magee JW, Seddon KR, Widegren JA (2006) Nature 439(16):831–834

    Article  CAS  Google Scholar 

  10. Mehnert CP (2005) Chem Eur J 11:50–56

    Article  Google Scholar 

  11. Wasserscheid P, Keim W (2000) Angew Chem Int Ed 39:3772

    Article  CAS  Google Scholar 

  12. Gordon CM (2001) Appl Catal A: General 222:101

    Article  CAS  Google Scholar 

  13. Dyson PJ (2002) Transition Metal Chem 27:353

    Article  CAS  Google Scholar 

  14. Zhao D, Wu M, Kou Y, Min E (2002) Catal Today 74:157

    Article  CAS  Google Scholar 

  15. Dupont J, de Souza RF, Suarez PAZ (2002) Chem Rev 102:3667

    Article  CAS  Google Scholar 

  16. Wasserscheid P, Waffenschmidt H, Machnitzki P, Kottsieper KW, Stetzler O (2001) Chem Commun 5:451

    Article  Google Scholar 

  17. Favre F, Olivier-Bourbigou H, Commereuc D, Saussine L (2001) Chem Commun 15:1360

    Article  Google Scholar 

  18. Wasserscheid P, Welton T (eds) (2003) In: Ionic Liquids in Synthesis. Wiley, New York

    Google Scholar 

  19. Wasserscheid P, Haumann M (2006) In: Cole-Hamilton D, Tooze B (eds) Catalyst separation, recovery and recycling. Springer, Berlin, Heidelberg, New York. pp 183–213

    Google Scholar 

  20. Acros Organics (www.acros.com)

    Google Scholar 

  21. Fluka (www.fluka.com)

    Google Scholar 

  22. Merck (www.merck.com)

    Google Scholar 

  23. Sigma-Aldrich (www.sigma-aldrich.com)

    Google Scholar 

  24. Solvent Innovation (www.solvent-innovation.com)

    Google Scholar 

  25. Strem (www.strem.com)

    Google Scholar 

  26. Wako (www.wako-chem.co.jp)

    Google Scholar 

  27. Riisager A, Eriksen KM, Wasserscheid P, Fehrmann R (2003) Catal Lett 90:149–153

    Article  CAS  Google Scholar 

  28. Riisager A, Wasserscheid P, van Hal R, Fehrmann R (2003) J Catal 219:252–255

    Article  Google Scholar 

  29. Riisager A, Fehrmann R, Wasserscheid P, van Hal R (2005) In: Rogers RD, Seddon KR (eds) Ionic liquids IIIB: fundamentals, progress, challenges, and opportunities – transformations and processes. ACS Symposium Series, vol. 902, 23:334

    Google Scholar 

  30. Riisager A, Fehrmann R, Flicker S, van Hal R, Haumann M, Wasserscheid P (2005) Angew Chem Int Ed 44:815–819

    Article  CAS  Google Scholar 

  31. Riisager A, Fehrmann R, Haumann M, Gorle BSF, Wasserscheid P (2005) Ind Eng Chem Res 44(26):9853–9859

    Article  CAS  Google Scholar 

  32. Riisager A, Fehrmann R, Haumann M, Wasserscheid P (2006) Eur J Inorg Chem, pp 695–706

    Google Scholar 

  33. Sherif FG, Shyu L-J (1999) WO9903163, Akzo Nobel Inc., USA

    Google Scholar 

  34. deCastro C, Sauvage E, Valkenberg MH, Hölderich WF (2000) J Catal 196:86–94

    Article  CAS  Google Scholar 

  35. Hölderich WF, Wagner HH, Valkenberg MH (2001) Spec Publ R Soc Chem 266:76–93

    Google Scholar 

  36. Valkenberg MH, deCastro C, Hölderich WF (2001) Stud Surf Sci Catal 135:4629–4636

    CAS  Google Scholar 

  37. Valkenberg MH, deCastro C, Hölderich WF (2001) Top Catal 14:139–144

    Article  Google Scholar 

  38. Mehnert CP, Cook RA, Dispenziere NC, Afeworki M (2002) J Am Chem Soc 124:12932

    Article  CAS  Google Scholar 

  39. Mehnert CP, Mozeleski EJ, Cook RA (2002) Chem Commun, pp 3010–3011

    Google Scholar 

  40. Wolfson A, Vankelecom IFJ, Jacobs PA (2003) Tetrahedron Lett 44:1195–1198

    Article  CAS  Google Scholar 

  41. Hagiwara H, Sugawara Y, Isobe K, Hoshi T, Suzuki T (2004) Org Lett 6:2325–2328

    Article  CAS  Google Scholar 

  42. Breitenlechner S, Fleck M, Müller TE, Suppan A (2004) J Mol Catal A: Chem 214:175–179

    Article  CAS  Google Scholar 

  43. van Leeuwen PWNM, Claver C (eds) (2000) In: Rhodium-Catalyzed Hydroformylation. Catalysis by Metal Complexes Series, Kluwer, Dordrecht

    Google Scholar 

  44. Young JF, Osborn JA, Jardine FA, Wilkinson G (1965) J Chem Soc Chem Commun, p 131

    Google Scholar 

  45. Evans D, Osborn JA, Wilkinson G (1968) J Chem Soc (A), p 3133

    Google Scholar 

  46. Evans D, Yagupsky G, Wilkinson G (1968) J Chem Soc (A), p 2660

    Google Scholar 

  47. Gregorio G, Montrasi G, Tampieri M, Cavalieri d'Oro P, Pagani G, Andreetta A (1980) Chim Ind (Milan) 62:389

    CAS  Google Scholar 

  48. Divekar SS, Desphande RM, Chaudhari RV (1993) Catal Lett 21:191

    Article  CAS  Google Scholar 

  49. Riisager A, Jørgensen B, Wasserscheid P, Fehrmann R (2006) Chem Commun, pp 994–996

    Google Scholar 

Download references

Acknowledgments

Financial support for parts of the reported work by the Deutsche Forschungsgemeinschaft (M. Haumann) and by the Danish Research Council for Technology and Production and the Villum Kann Rasmussen Foundation (A. Riisager) is gratefully acknowledged. The Bundesministerium für Bildung und Forschung (BMBF) is acknowledged for generous financial support within the lighthouse project “Regulated Systems for multiphase catalysis/smart solvents – smart ligands”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anders Riisager or Peter Wasserscheid .

Editor information

Walter Leitner Markus Hölscher

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Riisager, A., Fehrmann, R., Haumann, M., Wasserscheid, P. (2006). Catalytic SILP Materials. In: Leitner, W., Hölscher, M. (eds) Regulated Systems for Multiphase Catalysis. Topics in Organometallic Chemistry, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3418_042

Download citation

Publish with us

Policies and ethics