Skip to main content

Dendrimer-Encapsulated Bimetallic Nanoparticles: Synthesis, Characterization, and Applications to Homogeneous and Heterogeneous Catalysis

  • Chapter
  • First Online:

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 20))

Abstract

We review the preparation, characterization, and properties of dendrimer-templated bimetallic nanoparticles. Polyamidoamine (PAMAM) dendrimers can be used to template and stabilize a wide variety of mono- and bimetallic nanoparticles. Depending on the specific requirements of the metal system, a variety of synthetic methodologies are available for preparing nanoparticles with diameters on the order of 1–3 nm with narrow particle size distributions. The resulting dendrimer-encapsulated nanoparticles, or DENs, have been physically characterized with electron microscopy techniques, as well as UV-visible and X-ray photoelectron spectroscopies.

For certain metal systems, the chemical properties of bimetallic DENs include selective extraction from the dendrimer interior into organic solvents. Catalytic properties include homogeneous hydrogenation catalysis; heterogeneous hydrogenation and oxidation catalysis have also been examined. Homogeneous hydrogenation studies indicate that synergism in catalytic activity often occurs when two metals are intimately mixed in nanoparticles. DENs can also be deposited onto a variety of solid substrates and the organic dendrimer template thermally removed. The resulting activated nanoparticles are also active catalysts, and have been further characterized with infrared spectroscopy of adsorbed CO. Relationships between these heterogenized systems and the solution DENs are also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

PAMAM:

polyamidoamine

PPI:

polypropyleneimine

DENs:

dendrimer-encapsulated nanoparticles

Gx:

generation X (4, 5, …)

HRTEM:

high resolution transmission electron microscopy

EDS:

energy dispersive spectroscopy

XPS:

X-ray photoelectron spectroscopy

MPC:

monolayer protected cluster

SAM:

self-assembled monolayer

TOF:

turnover frequency

DRIFTS:

diffuse reflectance infrared Fourier transform spectroscopy

AA:

atomic absorption spectroscopy

ICP-MS:

inductively coupled plasma mass spectrometry

1,3-COD:

1,3-cyclooctadiene

References

  1. Fisher M, Vogtle F (1999) Angew Chem Int Ed 38:884

    Article  Google Scholar 

  2. Fréchet JMJ, Tomalia DA (eds) (2001) Dendrimers and other Dendritic Polymers. Wiley, West Sussex, UK

    Book  Google Scholar 

  3. Kreiter R, Kleij AW, Gebbink RJM, van Koten G (2001) Top Curr Chem 217:163–199

    Article  CAS  Google Scholar 

  4. Zeng F, Zimmerman SC (1997) Chem Rev 97:1681–1712

    Article  CAS  Google Scholar 

  5. Bosman AW, Janssen HM, Meijer EW (1999) Chem Rev 99:1665–1966

    Article  CAS  Google Scholar 

  6. Crooks RM, Zhao M, Sun L, Chechik V, Yeung LK (2001) Accts Chem Res 34:181–190

    Article  CAS  Google Scholar 

  7. Twyman LJ, King ASH, Martin IK (2002) Chem Soc Rev 31:69–82

    Article  CAS  Google Scholar 

  8. Cooper AI, Londono JD, Wignall G, McClain JB, Samulski ET, Lin JS, Dobrynin A, Rubinstein M, Burke ALC, Frechet JMJ, DeSimone JM (1997) Nature 389:368–371

    Article  CAS  Google Scholar 

  9. Crooks RM, Zhao M, Sun L, Chechik V, Yeung LK (2001) Accts Chem Res 34:181–190

    Article  CAS  Google Scholar 

  10. Crooks RM, Lemon BI, Sun L, Yeung LK, Zhao M (2001) Top Curr Chem 212:82–135

    Google Scholar 

  11. Ottaviani MF, Montalti F, Turro NJ, Tomalia DA (1997) J Phys Chem B 101:158–166

    Article  CAS  Google Scholar 

  12. Zhao M, Crooks RM (1998) J Am Chem Soc 120:4877–4878

    Article  CAS  Google Scholar 

  13. Balogh L, Tomalia DA (1998) J Am Chem Soc 120:7355–7356

    Article  CAS  Google Scholar 

  14. Zhao M, Crooks RM (1999) Adv Mater 11:217–220

    Article  CAS  Google Scholar 

  15. Zhao M, Sun L, Crooks RM (1998) J Am Chem Soc 120:4877–4878

    Article  CAS  Google Scholar 

  16. Scott RWJ, Wilson OM, Crooks RM (2005) J Phys Chem B 109:692–704

    Article  CAS  Google Scholar 

  17. Oh S-K, Kim Y-G, Ye H, Crooks RM (2003) Langmuir 19:10420–10425

    Article  CAS  Google Scholar 

  18. Pellechia PJ, Gao J, Gu Y, Ploehn HJ, Murphy CJ (2003) Inorg Chem 43:1421–1428

    Article  CAS  Google Scholar 

  19. Scott RWJ, Datye AK, Crooks RM (2003) J Am Chem Soc 125:3708–3709

    Article  CAS  Google Scholar 

  20. Chung Y-M, Rhee H-K (2003) Catal Lett 85:159–164

    Article  CAS  Google Scholar 

  21. Scott RWJ, Wilson OM, Oh S-K, Kenik EA, Crooks RM (2004) J Am Chem Soc 126:15583–15591

    Article  CAS  Google Scholar 

  22. Chung Y-M, Rhee H-K (2003) J Mol Catal A-Chem 206:291–298

    Article  CAS  Google Scholar 

  23. Hoover N, Auten B, Chandler BD (2006) J Phys Chem B 110:8606–8612

    Article  CAS  Google Scholar 

  24. Lang H, Maldonado S, Stevenson KJ, Chandler BD (2004) J Am Chem Soc 126:12949–12956

    Article  CAS  Google Scholar 

  25. Hills CW, Mack NH, Nuzzo RG (2003) J Phys Chem B 107:2626–2636

    Article  CAS  Google Scholar 

  26. Luo J, Maye MM, Petkov V, Kariuki NN, Wang L, Njoki P, Mott D, Lin Y, Zhong C-J (2005) Chem Mater 17:3086–3091

    Article  CAS  Google Scholar 

  27. Scott RWJ, Wilson OM, Oh S-K, Kenik EA, Crooks RM (2004) J Am Chem Soc 126:15583–15591

    Article  CAS  Google Scholar 

  28. Chung YM, Rhee HK (2004) J Colloid Interf Sci 271:131–135

    Article  CAS  Google Scholar 

  29. Chung Y-M, Rhee H-K (2004) Catal Surv Asia 8:211–223

    Article  CAS  Google Scholar 

  30. Endo T, Yoshimura T, Esumi K (2005) J Colloid Interf Sci 286:602–609

    Article  CAS  Google Scholar 

  31. Wilson OM, Scott RWJ, Garcia-Martinez JC, Crooks RM (2005) J Am Chem Soc 127:1015–1024

    Article  CAS  Google Scholar 

  32. Kim Y-G, Garcia-Martinez Joaquin C, Crooks Richard M (2005) Langmuir 21:5485–5491

    Article  CAS  Google Scholar 

  33. Kreibig U, Vollmer M (1995) Optical Properties of Metal Clusters, vol 25. Springer, Berlin Heidelberg New York

    Google Scholar 

  34. Creighton JA, Eadon DG (1991) J Chem Soc, Faraday Trans 87:3881–3891

    Article  CAS  Google Scholar 

  35. Mulvaney P (1996) Langmuir 12:788–800

    Article  CAS  Google Scholar 

  36. Wagner CD, Riggs WM (1979) Handbook of X-Ray Photoelectron Spectroscopy. Perkin-Elmer Co, Minnesota

    Google Scholar 

  37. Garcia-Martinez JC, Crooks RM (2004) J Am Chem Soc 126:16170–16178

    Article  CAS  Google Scholar 

  38. Wilson OM, Scott RWJ, Garcia-Martinez JC, Crooks RM (2004) Chem Mater 16:4202–4204

    Article  CAS  Google Scholar 

  39. Tao YT (1993) J Am Chem Soc 115:4350–4358

    Article  CAS  Google Scholar 

  40. Schlotter NE, Porter MD, Bright TB, Allara DL (1986) Chem Phys Lett 132:93–98

    Article  CAS  Google Scholar 

  41. Shibata T, Bunker Bruce A, Zhang Z, Meisel D, Vardeman Charles F, 2nd, Gezelter JD (2002) J Am Chem Soc 124:11989–11996

    Article  CAS  Google Scholar 

  42. Laibinis PE, Hickman JJ, Wrighton MS, Whitesides GM (1989) Science (Washington DC, United States) 245:845–847

    Article  CAS  Google Scholar 

  43. Sinfelt JH (1983) Bimetallic Catalysts: Discoveries, Concepts, and Applications. Wiley, New York

    Google Scholar 

  44. Schloegl R, Abd Hamid SB (2004) Angew Chemie Int Ed 43:1628–1637

    Article  CAS  Google Scholar 

  45. Lang H, Chandler BD (2005) In: Nanotechnology in Catalysis. Vol 3 (in press)

    Google Scholar 

  46. Lang H, Auten B, Chandler BD (2005) J Catal (submitted)

    Google Scholar 

  47. Ye H, Crooks RM (2005) J Am Chem Soc 127:4930–4934

    Article  CAS  Google Scholar 

  48. Ye H, Scott RWJ, Crooks RM (2004) Langmuir 20:2915–2920

    Article  CAS  Google Scholar 

  49. Beakley L, Yost S, Cheng R, Chandler BD (2005) Appl Catal A: General 292:124–129

    Article  CAS  Google Scholar 

  50. Scott RWJ, Wilson OM, Crooks RM (2004) Chem Mater 16:5682–5688

    Article  CAS  Google Scholar 

  51. Scott RWJ, Sivadinarayana C, Wilson OM, Yan Z, Goodman DW, Crooks RM (2005) J Am Chem Soc 127:1380–1381

    Article  CAS  Google Scholar 

  52. Lang H, May RA, Iversen BL, Chandler BD (2003) J Am Chem Soc 125:14832–14836

    Article  CAS  Google Scholar 

  53. Liu DX, Gao JX, Murphy CJ, Williams CT (2004) J Phys Chem B 108:12911–12916

    Article  CAS  Google Scholar 

  54. Forzatti P, Lietti L (1999) Catal Today 52:165–181

    Article  CAS  Google Scholar 

  55. Bartholomew CH (2001) Appl Catal A General 212:17–60

    Article  CAS  Google Scholar 

  56. Lang H, May RA, Iversen BL, Chandler BD (2005) In: Sowa JR (ed) Catalysis of Organic Reactions. Taylor & Francis Group/CRC Press, Boca Raton, FL, pp 243–250

    Google Scholar 

  57. Deutsch SD, Lafaye G, Liu D, Chandler BD, Williams CT, Amiridis MD (2004) Catal Lett 97:139–143

    Article  CAS  Google Scholar 

  58. Lafaye G, Williams CT, Amiridis MD (2004) Catal Lett 96:43–47

    Article  CAS  Google Scholar 

  59. Singh A, Chandler BD (2005) Langmuir 21:10776–10782

    Article  CAS  Google Scholar 

  60. Lang H, Auten B, Chandler BD (2006) Langmuir (in revision)

    Google Scholar 

  61. Che M, Bennett CO (1989) Advances in Catalysis 36:55–172

    Article  CAS  Google Scholar 

  62. Somorjai GA, Marsh AL (2005) Philos T Roy Soc A 363:879–900

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Robert A. Welch Foundation (Grant number W-1552) for financial support of this work. We also thank Prof. Dick Crooks and his research group for their valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bert D. Chandler .

Editor information

Lutz H. Gade

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chandler, B.D., Gilbertson, J.D. (2006). Dendrimer-Encapsulated Bimetallic Nanoparticles: Synthesis, Characterization, and Applications to Homogeneous and Heterogeneous Catalysis. In: Gade, L.H. (eds) Dendrimer Catalysis. Topics in Organometallic Chemistry, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3418_033

Download citation

Publish with us

Policies and ethics