Skip to main content
  • 1051 Accesses

8.8 Zusammenfassung

Die Erkenntnis, dass Hypothermie die Stoffwechselrate reduziert und die Ischämietoleranz von Organismen verlängert, hat entscheidenden Einfluss auf die Entwicklung der Herzchirurgie in den letzten 60 Jahren genommen. Seit der Entwicklung des kardiopulmonalen Bypasses ist der therapeutische Einsatz von Hypothermie eng mit der Herzchirurgie verbunden. Man unterscheidet zwischen milder (32–35°C), moderater (26–31°C), tiefer (20–25°C) und profounder (<20°C) Hypothermie. Während in den Anfängen der Herzchirurgie verschiedene Grade der Hypothermie bei praktisch allen operativen Eingriffen mit der Herz-Lungen-Maschine verwendet wurden, ist die active Kühlung heute meist nur noch Eingriffen vorbehalten, bei denen ein Herz-Kreislauf-Stillstand in Frage kommt oder bei komplexeren Operationen im Kindesalter. Trotz der enormen Erfahrung, die Herzchirurgen mit der Verwendung von Hypothermie erworben haben, gibt es keine einheitlichen Empfehlungen, die nach Evidence-based-Medicine-Kriterien den Einsatz von Hypothermie bei herzchirurgischen Eingriffen beschreiben. Mit diesem Kapitel warden wir versuchen, Empfehlungen zu entwerfen, um eine einheitlichere Verwendung von Hypothermie in der deutschen Herzchirurgie zu ermöglichen. Dies sollte die Auswertbarkeit der Qualitätskontrolle und damit möglicherweise die Patientenversorgung verbessern.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8.9 Literatur

  1. Swan H (1973) Clinical hypothermia: a lady with a past and some promise for the future. Surgery 73:736–758

    PubMed  CAS  Google Scholar 

  2. Williams WH, Davtyan HG, Drazanova M (1995) Hypothermia, cardiac surgery, and cardiopulmonary bypass. In: Mora CT (ed) Cardiopulmonary bypass: Principles and techniques of extracorporeal circulation. Springer, New York, pp 40–54

    Google Scholar 

  3. Bigelow WG, Mustard WT, Evans JW (1954) Some physiologic concepts of hypothermia and their applications to cardiac surgery. J Thorac Surg 28:463–480

    PubMed  CAS  Google Scholar 

  4. Bigelow WG, Lindsay WK, Greenwood WF (1950) Hypothermia — its possible role in cardiac surgery: an investigation of factors governing survival in dogs at low body temperatures. Ann Surg 132:849–864

    PubMed  CAS  Google Scholar 

  5. Barratt-Boyes BG, Simpson MM, Neutze JM (1970) Intracardiac surgery in neonates and infants using deep hypothermia. Circulation 61:III–73

    Google Scholar 

  6. Hamilton DI, Shackleton J, Rees GJ (1973) Experience with deep hypothermia in infancy using core cooling. In: Barrett-Boyes BG, Neutze JM, Harris EA (eds) Heart disease in infancy. Williams and Wilkins, Baltimore, pp 52–69

    Google Scholar 

  7. Griepp RB (2001) Cerebral protection during aortic arch surgery. J Thorac Cardiovas Surg 121:425–427

    Article  CAS  Google Scholar 

  8. Hagl C, Khaladi N, Peterss S, Hoeffler K, Winterhalter M, Karck M, Haverich A (2004) Hypothermic circulatory arrest with and without cold selctive ante-grade cerebral perfusion: impact on neurological recovery and tissue metabolism in an acute porcine model. Eur J Cardiothorac Surg 26:73–80

    Article  PubMed  Google Scholar 

  9. Bretschneider H (1964) Überlebenszeit und Wiederbelebungszeit des Herzens bei Normo-und Hypothermie. Verh Dtsch Ges Kreislaufforsch 30:17–23

    Google Scholar 

  10. Morgan HE, Neely JR (1986) Metabolic regulation and myocardial function. In: Hurst JW (ed) The heart; 6th. McGraw-Hill, New York, pp 85–100

    Google Scholar 

  11. Taegtmeyer H (1985) On the role of the purine nucleotide cycle in the isolated working rat heart. J Mol Cell Cardiol 17:1013–1018

    Article  PubMed  CAS  Google Scholar 

  12. Doenst T, Schlensak C, Beyersdorf F (2003) Cardioplegia in pediatric cardiac surgery — do we believe in magic? Ann Thorac Surg 75:1668–1677

    Article  PubMed  Google Scholar 

  13. Sealy WC (1989) Hypothermia: its possible role in cardiac surgery. Ann Thorac Surg 47:788–791

    Article  PubMed  CAS  Google Scholar 

  14. Schmid FX, Philipp A, Foltan M, Jueckstock H, Wiesenack C, Birnbaum D (2003) Adaequacy of perfusion during hypothermia: regional distribution of cardiopulmonary bypass flow, mixed venous and regional venous oxygen saturation. Hypothermia and distribution of flow and oxygen. Thorac Cardiovasc Surg 51:306–311

    Article  PubMed  CAS  Google Scholar 

  15. Bigelow WG, Callaghan JC, Hopps JA (1950) General hypothermia for experimental intracardiac surgery: the use of electrophrenic respirations, an artificial pacemaker for cardiac standstill and radiofrequency rewarming in general hypothermia. Ann Surg 132:531–539

    PubMed  CAS  Google Scholar 

  16. Niazi SA, Lewis FJ (1955) Effect of carbon dioxide on ventricular fibrillation and heart block during hypothermia in rats and dogs. S Forum 5(1954): 106–109

    CAS  Google Scholar 

  17. Connor EL, Wren KR (2000) Detrimental effects of hypothermia: a systems analysis. J PeriAnaesth Nurs 15:151–155

    Article  CAS  Google Scholar 

  18. Sakamoto T, Zurakowski D, Duebener LF, Lidov HGW, Holmes GL, Hurley RJ, Laussen PC, Jonas RA (2004) Interaction of temperature with hematocrit level and pH determines safe duration of hypothermic circulatory arrest. J Thorac Cardiovas Surg 128:220–232

    Article  Google Scholar 

  19. Sakamoto T, Nollert GDA, Zurakowski D, Soul J, Duebener LF, Sperling J, Nagashima M, Taylor G, du Plessis AJ, Jonas RA (2004) Hemodilution elevates cerebral blood flow and oxygen metabolism during cardiopulmonary bypass in piglest. Ann Thorac Surg 77:1656–1663

    Article  PubMed  Google Scholar 

  20. Kmiecik SA, Liu JL, Vaadia T, Nichols JD, Kohtz RJ, Mills NJ, Petterson CM, Stammers AH (2001) Quantitative evaluation of hypothermia, hyperthermia, and hemodilution on coagulation. J Extra Corpor Technol 33:100–105

    PubMed  CAS  Google Scholar 

  21. Niles SD, Sutton RG, Ploessl J, Pennell B (1995) Correlation of ACT as measured with three commercially available devices with circulating heparin level during cardiac surgery. J Extra Corpor Technol 27:197–200

    PubMed  CAS  Google Scholar 

  22. Huffman-Egger S (2003) Use of aprotinin in patients undergoing deep hypothermic circulatory arrest: a review. J Extra Corpor Technol 35:339–345

    PubMed  Google Scholar 

  23. Jonas RA (1998) Myocardial protection for neonates and infants. Thorac Cardiovasc Surg 46:288–291

    Article  PubMed  Google Scholar 

  24. Haverich A, Hagl C (2003) Organ protection during hypothermic circulatory arrest. J Thorac Cardiovas Surg 125:460–462

    Article  Google Scholar 

  25. Geissler HJ, Allen SJ, Mehlhorn U, Davis KL, de Vivie ER, Kurusz M, Butler BD (1997) Cooling gradients and formation of gaseous microemboli with cardiopulmonary bypass: an echocardiographic study. Ann Thorac Surg 64:100–104

    Article  PubMed  CAS  Google Scholar 

  26. Gaynor JW (1998) Use of modified ultrafiltration after repair of congenital heart defects. Sem Thorac Cardiovasc Surg 1:81–90

    Google Scholar 

  27. Myung RJ, Kirshbom PM, Petko M, Golden JA, Judkins AR, Ittenbach RF, Spray TL, Gaynor JW (2003) Modified ultrafiltration may not improve neurologic outcome following deep hypothermic circulatory arrest. Eur J Cardiothorac Surg 24:243–248

    Article  PubMed  Google Scholar 

  28. Rimpilainen J, Pokela MKK, Anttila V, Vainionpaa V, Hirvonen J (2000) Leukocyte filtration imporves brain protection after a prolonged period of hypothermic circulatory arrest: a study in a chronic porcine model. J Thorac Cardiovas Surg 120:1131–1141

    Article  CAS  Google Scholar 

  29. Langley SM, Chai PJ, Tsui SS, Jaggers JJ, Ungerleider RM (2000) The effects of leukocyte-depleting filter on cerebral and renal recovery after deep hypothermic circulatory arrest. J Thorac Cardiovas Surg 119:1262–1269

    Article  CAS  Google Scholar 

  30. Allen BS, Veluz JS, Buckberg GD, Aeberhard E, Ignarro JL (2003) Deep hypothermic circulatory arrest and global reperfusion injury: avoidance by making a pump prime reperfusate — a new concept. J Thorac Cardiovas Surg 125:625–632

    Article  Google Scholar 

  31. Bartels C, Gerdes A, Babin-Ebell J, Beyersdorf F, Boeken U, Doenst T, Feindt P, Heiermann M, Schlensak C, Sievers HH (2002) Cardiopulmonary bypass: evidence or experience based? J Thorac Cardiovasc Surg 124:20–27

    Article  PubMed  Google Scholar 

  32. Bigelow WG, Lindsay WK, Harrison RC, Gordon RA, Greenwood WF (1950) Oxygen transport and utilization in dogs at low temperature. Am J Physiol 160:125–134

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Steinkopff Verlag Darmstadt

About this chapter

Cite this chapter

Benk, C., Schlensak, C., Doenst, T. (2006). Aspekte zur praktischen Anwendung von Hypothermie in der Herzchirurgie. In: Feindt, P., Harig, F., Weyand, M. (eds) Empfehlungen zum Einsatz und zur Verwendung der Herz-Lungen-Maschine. Steinkopff. https://doi.org/10.1007/3-7985-1646-4_9

Download citation

  • DOI: https://doi.org/10.1007/3-7985-1646-4_9

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-7985-1504-8

  • Online ISBN: 978-3-7985-1646-5

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics