Skip to main content

Quantitative analysis of reagent distribution and reaction rates in vesicles

  • Vesicles, Bilayers, and Membranes
  • Conference paper
  • First Online:
Amphiphiles at Interfaces

Part of the book series: Progress in Colloid & Polymer Science ((PROGCOLLOID,volume 103))

Abstract

Vesicles prepared with synthetic amphiphiles constitute useful microreactors, where reaction rates can be delicately controlled. Here we review our work on quantitative analysis of reaction rates in vesicles and show that reaction at several vesicular sites can be probed and controlled. Vesicles prepared with dialkyldimethylammonium halides, (DODA)X, can accelerate bimolecular reactions by more than a million fold. Quantitative analysis of the vesicular effect on ester thiolysis, using a pseudophase ion exchange formalism, suggests that the rate increase is primarily due to reagent concentration in the bilayer and interfacial effects on ion distribution, as well as contributions from enhanced nucleophile reactivity. Vesicle-containing solutions exhibit a variety of potential reaction sites: the inner and outer surfaces, bilayer and internal aqueous compartment. Site dissection and reagent distribution has been accomplished, in several cases. For this purpose we have prepared vesicles of various sizes, determined some of their physical properties and developed theoretical and experimental tools for probing vesicular sites. The reactivity of OH in the internal compartment is identical to that in bulk solution. Moreover, the reaction rates of OH at the inner and outer vesicular interface are also comparable. However, since OH permeation through the bilayer can limit reaction rate, the relative inner/outer rate ratios can be controlled by changing the composition of the external and/or internal medium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Menger F, Gabrielson KD (1995) Angew Chem Int Ed Engl 34:2091–2106

    Article  CAS  Google Scholar 

  2. Fendler JH (1982) Membrane Mimetic Chemistry. Wiley, New York

    Google Scholar 

  3. Israelachvili J (1991) Intermolecular and Surface Forces, 2nd ed. Academic Press, San Diego

    Google Scholar 

  4. Ferris JP, Hill AR, Liv RH, Orgel LE (1996) Nature 381:59–61

    Article  CAS  Google Scholar 

  5. Pozzi G, Birault V, Werner B, Dannenmuller O, Nakatani Y, Ourisson G, Terakawa S (1996) Angew Chem Int Ed Engl 35:177–180

    Article  CAS  Google Scholar 

  6. Luisi P, Varela FJ (1986) Origin Life Evol Biosphere 19:633–643

    Article  Google Scholar 

  7. Bangham AD, Horne RW (1964) J Mol Biol 8:660–668

    Article  CAS  Google Scholar 

  8. Lasic DD (1989) La Recherche 200:904–913

    Google Scholar 

  9. Kunitake T, Okahata Y, Tamaki K, Kumamuro F, Yakayanagi M (1977) Chem Lett 387–390

    Google Scholar 

  10. Mortara RA, Quina FH, Chaimovich H (1978) Biochim Biophys Res Comm 81:1080–1086

    Article  CAS  Google Scholar 

  11. Lasic DD, Barenholz Y (eds) (1966) Handbook of Nonmedical Applications of Liposomes. CRC Press, New York (b) Engberts JBFN (1995) Biochim Biophys Acta 1241:232–240

    Google Scholar 

  12. Jager DA, Clennan MW, Jamrozik J (1990) J Am Chem Soc 112:1171–1176

    Article  Google Scholar 

  13. Hupe DJ, Jencks WP (1977) J Am Chem Soc 99:451–464

    Article  CAS  Google Scholar 

  14. Correia VR, Cuccovia IM, Chaimovich H (1993) J Phys Org Chem 6:7–14

    Article  CAS  Google Scholar 

  15. Cuccovia IM, Aleixo RMV, Mortara RA, Berci-Filho P, Bonilha JBS, Quina FH, Chaimovich H (1979) Tetrahedron Lett 3065–3068

    Google Scholar 

  16. Cuccovia IM, Chaimovich H (1966) In: Lasic DD, Barenholz Y (eds) Handbook of Nonmedical Applications of Liposomes. CRC Press, New York, pp 239–256

    Google Scholar 

  17. Chaimovich H, Bonilha JBS, Zanette D, Cuccovia IM (1984) In: Mittal KL, Lindmann B (eds) Surfactants in Solution, Vol. 2. Plenum Press, New York, pp 1121–1138

    Google Scholar 

  18. Jencks WP (1969) Catalysis in Chemistry and Enzymology, McGraw-Hill, New York

    Google Scholar 

  19. Fendler JH, Hinze WL (1981) J Am Chem Soc 103:5439–5447

    Article  CAS  Google Scholar 

  20. Cuccovia IM, Quina FH, Chaimovich H (1982) Tetrahedron 38:917–920

    Article  CAS  Google Scholar 

  21. Chaimovich H, Aleixo RMV, Cuccovia IM, Zanette D, Quina FH (1984) In: Mittal KL, Fendler EJ (eds) Solution Behavior of Surfactants, Vol 2: Plenum Press, New York, pp 949–973

    Google Scholar 

  22. Bunton CA (1991) In: Mittal KL (ed) Surfactants in Solution, Vol 11. Plenum Press, New York, pp 17–40

    Google Scholar 

  23. Singer LA (1982) In: Mittal KL, Fendler EJ (eds) Solution Behaviour of Surfactants, Vol 1. Plenum Press, New York, pp 73–112

    Google Scholar 

  24. Quina FH, Alonso EO, Farah JPS (1995) J Phys Chem 99:11708–11714

    Article  CAS  Google Scholar 

  25. Abuin EB, Lissi EA (1983) J Colloid Interface Sci 95:198–203

    Article  CAS  Google Scholar 

  26. Bunton CA, Nome F, Quina FH, Romsted LS (1991) Acc Chem Res 24:357–364

    Article  CAS  Google Scholar 

  27. Lissi EA, Abuin EB, Cuccovia IM, Chaimovich H (1986) J Colloid Interface Sci 112:513–520; (b) Lissi E, Abuin E, Ribot G, Valenzuela E, Chaimovich H, Araujo P, Aleixo RMV, Cuccovia IM (1985) J Colloid Interface Sci 103:139–144

    Article  CAS  Google Scholar 

  28. Brochsztein S, Berci-Filho P, Toscano VG, Chaimovich H, Politi MJ (1990) J Phys Chem 94:6781–6785

    Article  Google Scholar 

  29. Kolthoff IM, Johonson WF (1951) J Am Chem Soc 73:4563–4568

    Article  CAS  Google Scholar 

  30. Romsted LS (1977) In: Mittal KL (ed) Micellization, Solubilization and Microemulsions, Vol 2. pp 509–530 (b) Quina FH, Chaimovich H (1979) J Phys Chem 83:1844–1850

    Google Scholar 

  31. Bunton CA, Savelli G (1986) Adv Phys Org Chem 22:213–309

    Article  CAS  Google Scholar 

  32. Abuin EA, Lissi EB, Backer E, Zanocco A, Whitten D (1989) J Phys Chem 93:4886–4890

    Article  Google Scholar 

  33. Cuccovia IM, Chaimovich H, Lissi EB, Abuin EA (1990) Langmuir 6:1601–1604

    Article  CAS  Google Scholar 

  34. Abuin EA, Lissi EB, Araujo PS, Aleixo RMV, Chaimovich H, Bianchi N, Miola L, Quina FH (1983) J Colloid Interface Sci 96:293–295

    Article  CAS  Google Scholar 

  35. Furhop J, Mathieu J (1984) Angew Chem Int Engl 23:100–113

    Article  Google Scholar 

  36. Carmona-Ribeiro AM, Chaimovich H (1983) Biochim Biophys Acta 733:172–179; (b) Carmona-Ribeiro AM, Yoshida LS, Chaimovich H (1985) J Phys Chem 89:2928–2933

    Article  Google Scholar 

  37. Cuccovia IM, Sesso A, Abuin E, Okino PF, Tavares PG, Campos JFS, Florenzano FH, Chaimovich H, J Mol Liquids, accepted

    Google Scholar 

  38. Cuccovia IM, Feitosa ES, Chaimovich H, Reed W (1990) J Phys Chem 94:3722–3725

    Article  CAS  Google Scholar 

  39. Davies JT (1949) Trans Faraday Soc 45:448–460

    Article  CAS  Google Scholar 

  40. Kunitake T, Okahata Y, Ando R, Shinkai S, Hirakawa S (1980) J Am Chem Soc 102:7877–7881

    Article  CAS  Google Scholar 

  41. Kawamuro MK, Chaimovich H, Abuin EB, Lissi EA, Cuccovia IM (1991) J Phys Chem 95:1458–1463

    Article  CAS  Google Scholar 

  42. Cuccovia IM, Chaimovich H (1990) Bol Soc Chil Quim 35:39–42

    CAS  Google Scholar 

  43. Kosower EM, Patton JW (1966) Tetrahedron 22:2081–2093

    Article  CAS  Google Scholar 

  44. Politi MJ, Chaimovich H (1991) J Phys Org Chem 4:207–216

    Article  CAS  Google Scholar 

  45. Chaimovich H, Bonilha JBS, Politi MJ, Quina FH (1979) J Phys Chem 86:1951–1953

    Google Scholar 

  46. Wong M, Thomas TK, Nowak T (1977) J Am Chem Soc 99:4730–4734

    Article  CAS  Google Scholar 

  47. Moss RA, Ganguli S, Okumura Y, Fujita T (1990) J Am Chem Soc 112:6391–6392

    Article  CAS  Google Scholar 

  48. Mille M, Vanderkooi G (1977) J Colloid Interface Sci 61:455–474; (b) Bentz J (1982) J Colloid Interface Sci 90:164–182

    Article  CAS  Google Scholar 

  49. Feitosa ES, Agostinho A, Chaimovich H (1993) Langmuir 9:702–707

    Article  CAS  Google Scholar 

  50. Chaudhuri A, Loughlin JA, Romsted LS, Yao J (1993) J Am Chem Soc 115:8351–8361

    Article  CAS  Google Scholar 

  51. Cuccovia IM, da Silva IN, Chaimovich H, Romsted LS Langmuir, in press

    Google Scholar 

  52. da Silva IN, Chaimovich H, Cuccovia IM (1995) Resumos da XXV Reuniäo Anual da Soci dade Brasileira de Bioquímica e Biologia Molecular, Caxambú, MG, Brasil, p 155

    Google Scholar 

  53. Cuccovia IM, Kawamuro MK, Krutman MAK, Chaimovich H (1989) J Am Chem Soc 111:365–366

    Article  CAS  Google Scholar 

  54. Moss RA, Bhattacharya S, Scrimin P, Swarup S (1987) J Am Chem Soc 109:5740–5744; (b) Moss RA, Bhattacharya S, Chatterjee S (1989) J Am Chem Soc 111:3680–3687

    Article  CAS  Google Scholar 

  55. Jain M, Wagner RC (1980) Introduction to Biological Membranes. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. Texter

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Steinkopff Verlag

About this paper

Cite this paper

Chaimovich, H., Cuccovia, I.M. (1997). Quantitative analysis of reagent distribution and reaction rates in vesicles. In: Texter, J. (eds) Amphiphiles at Interfaces. Progress in Colloid & Polymer Science, vol 103. Steinkopff. https://doi.org/10.1007/3-798-51084-9_8

Download citation

  • DOI: https://doi.org/10.1007/3-798-51084-9_8

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-7985-1084-5

  • Online ISBN: 978-3-7985-1662-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics