Skip to main content

Adsorption kinetics of surfactants at fluid-fluid interfaces

  • Liquid/Liquid Interfaces
  • Conference paper
  • First Online:

Part of the book series: Progress in Colloid & Polymer Science ((PROGCOLLOID,volume 103))

Abstract

We review a new theoretical approach to the kinetics of surfactant adsorption at fluid-fluid interfaces. It yields a more complete description of the kinetics both in the aqueous solution and at the interface, deriving all equations from a free-energy functional. It also provides a general method to calculate dynamic surface tensions. For non-ionic surfactants, the results coincide with previous models. Non-ionic surfactants are shown to usually undergo diffusion-limited adsorption, in agreement with the experiments. Strong electrostatic interactions in salt-free ionic surfactant solutions are found to lead to kinetically limited adsorption. In this case, the theory accounts for unusual experimental results which could not be understood using previous approaches. When salt is added, the electrostatic interactions are screened and the ionic surfactant adsorption becomes similar to the non-ionic case. The departure from the non-ionic behavior as the salt concentration is decreased is calculated perturbatively.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ward AFH, Tordai L (1946) J Chem Phys 14:453

    Article  CAS  Google Scholar 

  2. For reviews of both experiments and theory see: Borwankar RP, Wasan DT (1988) Chem Eng Sci 43: 1323; Miller R, Kretzschmar G (1991) Adv Colloid Interface Sci 37:97; Dukhin SS, Kretzschmar G, Miller R (1995) In: Möbius D, Miller R (eds) Dynamics of Adsorption at Liquid Interfaces: Theory, Experiment, Application. Studies in Interface Science Series. Elsevier Amsterdam

    Article  CAS  Google Scholar 

  3. Delahay P, Fike CT (1958) J Am Chem Soc 80:2628

    Article  CAS  Google Scholar 

  4. Hansen RS (1960) J Phys Chem 64:637

    Article  CAS  Google Scholar 

  5. van den Bogaert R, Joos P (1980) J Phys Chem 84:190

    Article  Google Scholar 

  6. Miller R, Kretzschmar G (1980) Colloid Polym Sci 258:85

    Article  CAS  Google Scholar 

  7. Borwankar RP, Wasan DT (1983) Chem Eng Sci 38:1637

    Article  CAS  Google Scholar 

  8. Lin SY, McKeigue K, Maldarelli C (1990) AIChE J 36:1785

    Article  CAS  Google Scholar 

  9. Chang CH, Franses El (1992) Colloids Surf 69:189

    Article  CAS  Google Scholar 

  10. An earlier discussion of this assumption is found in: Fordham S (1954) Trans Faraday Soc 54:593

    Article  Google Scholar 

  11. Diamant H, Andelman D (1996) Europhys Lett 34:575

    Article  CAS  Google Scholar 

  12. Diamant H, Andelman D (1996) J Phys Chem 100:13732

    Article  CAS  Google Scholar 

  13. Bonfillon A, Langevin D (1993) Langmuir 9: 2172; Bonfillon A, Sicoli F, Langevin D 1;1994) J Colloid Interface Sci 168:497

    Article  CAS  Google Scholar 

  14. For an earlier discussion of such a distinction, see: Tsonopoulos C, Newman J, Prausnitz JM (1971) Chem Eng Sci 26:817

    Article  CAS  Google Scholar 

  15. Adamson AW (1990) Physical Chemistry of Surfaces, 5th ed. Wiley, New York, Chapters XI, XVI

    Google Scholar 

  16. See, for example, Langer JS (1991) In: Godrèche C (ed) Solids Far From Equilibrium. Cambridge University Press, Cambridge

    Google Scholar 

  17. Addison CC, Hutchinson SK (1949) J Chem Soc (London):3387

    Google Scholar 

  18. Hua XY, Rosen MJ (1991) J Colloid Interface Sci 141:180

    Article  CAS  Google Scholar 

  19. Sutherland KL (1952) Austral J Sci Res A 5:683

    Google Scholar 

  20. Lin SY, McKeigue K, Maldarelli C (1991) Langmuir 7:1055

    Article  CAS  Google Scholar 

  21. Hua XY, Rosen MJ (1988) J Colloid Interface Sci 124:652

    Article  CAS  Google Scholar 

  22. Dukhin SS, Miller R, Kretzschmar G (1983) Colloid Polym Sci 261: 335; Miller R, Dukhin SS, Kretzschmar G (1985) Colloid Polym Sci 263:420

    Article  CAS  Google Scholar 

  23. Borwankar RP, Wasan DT (1986) Chem Eng Sci 41:199

    Article  CAS  Google Scholar 

  24. MacLeod CA, Radke CJ (1994) Langmuir 10:3555

    Article  CAS  Google Scholar 

  25. Onsager L, Samaras NNT (1934) J Chem Phys 2:528

    Article  CAS  Google Scholar 

  26. Davis JT (1958) Proc Roy Soc A 245:417

    Article  Google Scholar 

  27. Verwey EJW, Overbeek JThG (1948) Theory of the Stability of Lyophobic Colloids, Elsevier, New York

    Google Scholar 

  28. Andelman D (1995) In: Lipowsky R, Sackmann E (eds) Handbook of Biological Physics, Vol 113. Elsevier Amsterdam

    Google Scholar 

  29. Debye P, Hückel E (1923) Phyzik 24: 185; Debye P, Hückel E (1924) Phyzik 25:97

    CAS  Google Scholar 

  30. Fainerman VB (1978) Colloid J USSR 40:769

    Google Scholar 

  31. Rasing Th, Stehlin T, Shen YR, Kim MW, Valint Jr P (1988) J Chem Phys 89:3386

    Article  CAS  Google Scholar 

  32. There are cases encountered in practice where lateral diffusion seems to play an important role. See Joos P, Fang JP, Serrien G (1992) Colloid Interface Sci 151: 144; Menger FM, Littau CA (1993) J Am Chem Soc 115:10083

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. Texter

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Steinkopff Verlag

About this paper

Cite this paper

Diamant, H., Andelman, D. (1997). Adsorption kinetics of surfactants at fluid-fluid interfaces. In: Texter, J. (eds) Amphiphiles at Interfaces. Progress in Colloid & Polymer Science, vol 103. Steinkopff. https://doi.org/10.1007/3-798-51084-9_6

Download citation

  • DOI: https://doi.org/10.1007/3-798-51084-9_6

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-7985-1084-5

  • Online ISBN: 978-3-7985-1662-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics