Skip to main content

Redox chemistry at liquid/liquid interfaces

  • Liquid/Liquid Interfaces
  • Conference paper
  • First Online:

Part of the book series: Progress in Colloid & Polymer Science ((PROGCOLLOID,volume 103))

Abstract

The interface between two immiscible liquids with immobilized photosynthetic pigments can serve as the simplest model of a biological membrane convenient for the investigation of photoprocesses accompanied by spatial separation of charges. As it follows from thermodynamics, if the resolvation energies of substrates and products are very different, the interface between two immiscible liquids may act as a catalyst. Theoretical aspects of charge transfer reactions at oil/water interfaces are discussed. Conditions under which the free energy of activation of the interfacial reaction of electron transfer decreases are established. The activation energy of electron transfer depends on the charges of the reactants and dielectric permittivity of the non-aqueous phase. This can be useful when choosing a pair of immiscible solvents to decrease the activation energy of the reaction in question or to inhibit an undesired process. Experimental interfacial catalytic systems are discussed. Amphiphilic molecules such as chlorophyll or porphyrins were studied as catalysts of electron transfer reactions at the oil/water interface.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Volkov AG, Deamer DW (eds) (1996) Liquid-Liquid Interfaces: Theory and Methods. CRC-Press, Boca Raton, London, Tokyo

    Google Scholar 

  2. Boguslavsky LI Volkov AG (1987) In: Kazarinov VE (ed) The Interface Structure and Electrochemical Processes at the Boundary Between Two Immiscible Liquids. Springer, Berlin, pp 143–178

    Google Scholar 

  3. Volkov AG (1989) Bioelectrochem Bioenerg 21:3–24

    Article  CAS  Google Scholar 

  4. Gingell D, Todd I, Parsegian VA (1977) Nature 268:767–769

    Article  CAS  Google Scholar 

  5. Yaguzhinsky LS, Boguslavsky LI, Volkov AG, Rakhmaninova AB (1975) Nature 259:494–496

    Article  Google Scholar 

  6. Faraday M (1857) Philos Trans R Soc London 147:145–181

    Article  Google Scholar 

  7. Volkov AG, Lozhkin BT, Boguslavsky LI (1975) Doklady Akad Nauk SSSR 220:1207–1210

    CAS  Google Scholar 

  8. Bell RP (1928) J Phys Chem 32:882–893

    Article  CAS  Google Scholar 

  9. Boguslavsky LI, Kondrashin AA, Kozlov IA, Metelsky ST, Skulachev VP, Volkov AG (1975) FEBS Lett 50:223–226

    Article  CAS  Google Scholar 

  10. Volkov AG (1986) J Electroanal Chem 205:245–257

    Article  CAS  Google Scholar 

  11. Kakiuchi T (1996) In: Volkov AG, Deamer DW (eds) Liquid-Liquid Interfaces. Theory and Methods. CRC-Press, Boca Raton, New York, London, Tokyo, pp 317–331

    Google Scholar 

  12. Volkov AG, Gugeshashvili MI, Deamer DW (1995) Electrochim Acta 40:2849–2868

    Article  CAS  Google Scholar 

  13. Volkov AG, Bibikova MA, Mironov AF, Boguslavsky LI (1983) Bioelectrochem Bioenerg 10:477–483

    Article  CAS  Google Scholar 

  14. Volkov AG, Gugeshashvili MI, Mironov AF, Boguslavsky LI (1983) Bioelectrochem Bioenerg 10:485–491

    Article  CAS  Google Scholar 

  15. Volkov AG, Mironov AF, Boguslavsky LI (1976) Elektrokhimiya 12:1326–1329

    CAS  Google Scholar 

  16. Boguslavsky LI, Volkov AG, Kondrashin AA, Metelsky ST, Yasaitis AA (1976) Biokhimiya 41:1047–1051

    Google Scholar 

  17. Garcia E, Texter JJ (1994) J Colloid Interface Sci 162:262–264

    Article  CAS  Google Scholar 

  18. Volkov AG (1984) J Electroanal Chem 173:15–24

    Google Scholar 

  19. Kotov NA, Kuzmin MG (1996) In: Volkov AG, Deamer DW (eds) LiquidLiquid Interfaces. Theory and Methods. CRC-Press, Boca Raton, New York, Tokyo, pp 375–400

    Google Scholar 

  20. Volkov AG, Deamer DW, Tanelian DI, Markin VS (1997) Liquid Interfaces in Chemistry and Biology. J Wiley, New York

    Google Scholar 

  21. Kharkats Yu I, Volkov AG (1985) J Electroanal Chem 184:435–439

    Article  CAS  Google Scholar 

  22. Kharkats Yu I, Volkov AG (1987) Biochim Biophys Acta 891:56–67

    Article  CAS  Google Scholar 

  23. Kharkats Yu I (1976) Sov Electrochem 12:1370–1377

    CAS  Google Scholar 

  24. Volkov AG, Kharkats Yu I (1985) Kinetica Kataliz 26:1322–1326

    CAS  Google Scholar 

  25. Volkov AG, Kharkats Yu I (1986) Chem Phys 5:964–971

    CAS  Google Scholar 

  26. Kharkats Yu I, Kuznetsov AM (1986) In: Volkov AG, Deamer DW (eds) Liquid-Liquid Interfaces. Theory and Methods. CRC-Press, Boca Raton, New York, Tokyo, pp 139–154

    Google Scholar 

  27. Kharkats Yu I (1990) Sov Electrochem 26:1032–1039

    Google Scholar 

  28. Kornyshev AA, Volkov AG (1984) J Electroanal Chem 180:363–381

    Article  CAS  Google Scholar 

  29. Volkov AG, Kornyshev AA (1985) Electrokhimiya 21:814–817

    CAS  Google Scholar 

  30. Marcus RA (1990) J Phys Chem 94:1050–1055

    Article  CAS  Google Scholar 

  31. Marcus RA (1990) J Phys Chem 94:4152–4155

    Article  CAS  Google Scholar 

  32. Marcus RA (1991) J Phys Chem 95:2010–2013

    Article  CAS  Google Scholar 

  33. Marcus RA (1956) J Chem Phys 24:966–978

    Article  CAS  Google Scholar 

  34. Girault HHJ (1995) J Electroanal Chem 388:93–100

    Article  Google Scholar 

  35. Samec Z (1996) In: Volkov AG, Deamer DW (eds) Liquid-Liquid Interfaces. Theory and Methods. CRC-Press, Boca Raton, New York, Tokyo pp 155–178

    Google Scholar 

  36. Cunnane V, Murtomaki L (1996) In: Volkov AG, Deamer DW (eds) Liquid-Liquid Interfaces. Theory and Methods. CRC-Press, Boca Raton, New York, Tokoyo, pp 401–416

    Google Scholar 

  37. Guainazzi M, Silvestri G, Serravalle G (1975) J Chem Soc Chem Commun 200–201

    Google Scholar 

  38. Boguslavsky LL Lozhkin BT, Kiselev BA (1975) Doklady Akad Nauk SSSR 222:228–231

    Google Scholar 

  39. Tien H Ti (1986) Bioelectrochem Bioenergy 15:19–38

    Article  CAS  Google Scholar 

  40. Tien H Ti (1989) Progress Surf Sci 30:1–199

    Article  CAS  Google Scholar 

  41. Tien H Ti (1974) Bilayer Lipid Membranes. Theory and Practice. M Dekker, New York

    Google Scholar 

  42. Starks CM, Liotta CL, Halper NM (1994) Phase Transfer Catalysis. Chapman & Hall, New York

    Google Scholar 

  43. Gugeshashvili MI, Volkov AG, Yaguzhinsky LS, Mironov AF, Boguslavsky LI (1983) Bioelectrochem Bioenerg 10:493–498

    Article  CAS  Google Scholar 

  44. Timiriazeff C (1885) Nature 32:342

    Google Scholar 

  45. Seely GR (1977) In: Barber J (ed) Primary Processes of Photosynthesis Elsevier, Amsterdam, pp 1–53

    Google Scholar 

  46. Rabinowitch E, Weiss I (1937) Proc R Soc (London) A 162:251–267

    Article  CAS  Google Scholar 

  47. Boguslavsky LL Volkov AG, Kandelaki MD (1976) FEBS Lett 65:155–158

    Article  CAS  Google Scholar 

  48. Boguslavsky LI, Volkov AG, Kandelaki MD (1977) Bioelectrochem Bioenerg 4:68–72

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. Texter

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Steinkopff Verlag

About this paper

Cite this paper

Volkov, A.G., Deamer, D.W. (1997). Redox chemistry at liquid/liquid interfaces. In: Texter, J. (eds) Amphiphiles at Interfaces. Progress in Colloid & Polymer Science, vol 103. Steinkopff. https://doi.org/10.1007/3-798-51084-9_3

Download citation

  • DOI: https://doi.org/10.1007/3-798-51084-9_3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-7985-1084-5

  • Online ISBN: 978-3-7985-1662-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics