Skip to main content

Forming patterned films with tethered polymers

  • Adsorption at Solid/Liquid Interfaces
  • Conference paper
  • First Online:
  • 166 Accesses

Part of the book series: Progress in Colloid & Polymer Science ((PROGCOLLOID,volume 103))

Abstract

We use numerical and analytical models to investigate polymer films formed by tethering chains to flat surfaces and immersing the system in a poor solvent. Since the ends of the chains are immobilized on the surface, the polymers avoid the unfavorable solvent by clustering together into aggregates, or pinned micelles, on the surface. These micelles have a uniform size and spacing and form a distinct pattern. We demonstrate that more complex surface patterns can be generated by tethering homopolymers to two surfaces (so that the chains bridge the interfaces) or anchoring copolymers onto one surface. Our numerical calculations reveal the morphology of the layer and the scaling arguments indicate how the dimensions of the patterns depend on the characteristics of the chains and solvent. Finally, we investigate how free copolymers in solution can be exploited to modify the patterns in the film. These results provide further guidelines for controlling the structure of the tethered layer. Overall, the patterned films are useful in the fabrication of adhesives, lubricants and ordered colloidal arrays. The surfaces can also be used to regulate the flow of molecules in channels and for selective filtration systems.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Singhvi R (1994) Science 264:696

    Article  CAS  Google Scholar 

  2. Aksay IA (1996) Science 273:892

    Article  CAS  Google Scholar 

  3. Klushin LI (1992) unpublished work

    Google Scholar 

  4. Lai P, Binder K (1992) J Chem Phys 97:586

    Article  CAS  Google Scholar 

  5. Yeung C, Balazs AC, Jasnow D (1993) Macromolecules 26:1914

    Article  CAS  Google Scholar 

  6. Huang K, Balazs AC (1993) Macromolecules 26:4736

    Article  CAS  Google Scholar 

  7. Williams DRM (1993) J Physique II 3:1313

    Article  CAS  Google Scholar 

  8. Grest GS, Murat M (1993) Macromolecules 26:3108

    Article  CAS  Google Scholar 

  9. Soga KG, Guo H, Zuckermann MJ (1995) Europhys Lett 29:531

    Article  CAS  Google Scholar 

  10. The size of the micelles is determined by a balance between the entropic losses due to the stretching of the chains to form these aggregates and the energetic gain due to the mutual shielding of the chains from the poor solvent.

    Google Scholar 

  11. Siqueira DF, Kohler K, Stamm M (1995) Langmuir 11:3092

    Article  CAS  Google Scholar 

  12. Zhao W, Krausch G, Rafailovich M, Sokolov J (1994) Macromolecules 27: 2933

    Article  CAS  Google Scholar 

  13. O'Shea SJ, Welland ME, Rayment T (1993) Langmuir 9:1826

    Article  Google Scholar 

  14. Stamouli A, Pelletier E, Koutsos V, Vegte E. van der, Hadziiozannou G (1996) Langmuir 12:3221

    Article  CAS  Google Scholar 

  15. Singh C, Zhulina E, Gersappe D, Pickett G, Balazs AC (1996) Macromolecules 29:7636

    Google Scholar 

  16. Zhulina E, Balazs AC (1996) Macromolecules 29:2667

    Article  CAS  Google Scholar 

  17. Zhulina E, Singh C, Balazs AC (1996) Macromolecules 29:6338

    Article  CAS  Google Scholar 

  18. Zhulina E, Singh C, Balazs AC (1996) Macromolecules, 29:8254

    Article  CAS  Google Scholar 

  19. Singh C, Balazs AC (1996) Macromolecules, 29:8904

    Article  CAS  Google Scholar 

  20. Singh C, Pickett G, Balazs AC (1996) Macromolecules 29:7559

    Article  CAS  Google Scholar 

  21. Huang K, Balazs AC (1991) Phys Rev Lett 66:620

    Article  CAS  Google Scholar 

  22. Israels R, Gersappe D, Fasolka M, Roberts VA, Balazs AC (1994) Macromolecules 27:6679

    Article  CAS  Google Scholar 

  23. Singh C, Balazs AC (1996) J Chem Phys 105:706

    Article  CAS  Google Scholar 

  24. Fleer G, Cohen-Stuart MA, Scheutjens JMHM, Cosgrove T, Vincent B (1993) Polymers at Interfaces. Chapman and Hall, London

    Google Scholar 

  25. Zhulina EB, Birshtein TM, Priamitsyn VA, Klushin LI (1995) Macromolecules 28:8612

    Article  CAS  Google Scholar 

  26. Johner A, Joanny JF (1991) J Phys. II 1:181

    Article  CAS  Google Scholar 

  27. Hadziioannou G (1996) private communication.

    Google Scholar 

  28. Chen C, Dan N, Dhoot S, Tirrell M, Mays J, Watanabe W (1995) Israel J Chem 35:41

    CAS  Google Scholar 

  29. Gersappe D, Balazs AC (1997, submitted, J. Chem. Phys.) Interactions Between Free Chains and Pinned Micelles.

    Google Scholar 

  30. In the case of a planar, penetrable interface, the amount of adsorbed diblock is also significantly greater than that for the alternating copolymer (see ref. [31])

    Google Scholar 

  31. Gersappe D, Balazs, AC (1995) Phys Rev E 52:5061; Lyatskaya Y, Gersappe D, Gross N, Balazs AC (1996) J Phys Chem 100:149

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. Texter

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Steinkopff Verlag

About this paper

Cite this paper

Balazs, A.C., Singh, C., Zhulina, E., Gersappe, D., Pickett, G. (1997). Forming patterned films with tethered polymers. In: Texter, J. (eds) Amphiphiles at Interfaces. Progress in Colloid & Polymer Science, vol 103. Steinkopff. https://doi.org/10.1007/3-798-51084-9_26

Download citation

  • DOI: https://doi.org/10.1007/3-798-51084-9_26

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-7985-1084-5

  • Online ISBN: 978-3-7985-1662-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics