Skip to main content

Experimental tests for thermally-induced fluctuations in lipid bilayers

  • Vesicles, Bilayers, and Membranes
  • Conference paper
  • First Online:
Amphiphiles at Interfaces

Part of the book series: Progress in Colloid & Polymer Science ((PROGCOLLOID,volume 103))

  • 170 Accesses

Abstract

For several years researchers have been investigating the interactions between solvated lipid bilayers. Presently there is some disagreement regarding the range, magnitude, and origin of the long-and short-range repulsive and attractive interactions between bilayers. To address this issue experimentally, we have used the osmotic stress/X-ray diffraction method to measure the total repulsive pressure as a function of interbilayer distance for both fluid and solid bilayers. These bilayers were primarily composed of the most common phospholipids found in biological membranes, the zwitterionic lipids phosphatidylcholine (PC) and phosphatidylethanolamine (PE). For PC bilayers the pressure-distance data can be explained by the presence of an attractive van der Waals pressure and short- and long-range repulsive pressures. The short-range underling pressure, which extends about 4 Å into the fluid space from each monolayer, is due to an enthalpically driven, exponentially decaying pressure arising from the work to remove water from the hydrophilic polar head groups, and an excluded volume contribution arising from the non-ideal interactions between head groups from apposing bilayers. This review focusses on experiments designed to determine quantitatively the effects of a long-range repulsive pressure, due to undulations of the entire bilayer arising from thermally induced bending moments. In these experiments pressure-distance relations were measured for bilayers with a range of bending moduli (measured independently) obtained as a function of temperature, the number of double bonds in the lipid acyl chains, and the presence of exogenous compounds such as lysophosphatidylcholine. For PC bilayers the equilibrium fluid spacings can be manipulated in a manner predictable by a theory of continuous unbinding. However, for PE bilayers there is an additional attractive pressure arising from interactions between the PE head groups. This additional interaction, responsible for the large adhesion energy of PE bilayers, gives rise to discontinuous disjoining of PE bilayers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Parsegian VA, Rau DC (1984) J Cell Biol 99:196s-200s

    Article  CAS  Google Scholar 

  2. Rand RP, Parsegian VA (1989) Biochim Biophys Acta 988:351–376

    CAS  Google Scholar 

  3. Chernomordik LV, Kozlov MM, Zimmerberg J (1995) J Membr Biol 146:3

    Google Scholar 

  4. Cafiso DS (1995) In: Disalvo EA, Simon SA (eds) Permeability and Stability of Lipid Bilayers. CRC Press, Boca Raton, Florida

    Google Scholar 

  5. Simon SA, McIntosh TJ (1996) Cold Spring Harbor Symposia on Quantitastive Biology LX. Cold Spring Harbor Laboratory Press, pp 601–608

    Google Scholar 

  6. Derjaguin BV, Landau L (1941) Acta Physiochim USSR 14:633–662

    Google Scholar 

  7. Verwey EJW, Overbeek JTG (1948) Theory of the Stability of Lyophobic Colloids. Elsevier, Amsterdam

    Google Scholar 

  8. LeNeveu DM, Rand RP, Parsegian VA, Gingell D (1977) Biophys J 18:209–230

    CAS  Google Scholar 

  9. Lis LJ, McAlister M, Fuller N, Rand RP, Parsegian VA (1982) Biophys J 37:657–666

    CAS  Google Scholar 

  10. Parsegian VA, Fuller N, Rand RP (1979) Proc Nat Acad Sci USA 76:2750–2754

    Article  CAS  Google Scholar 

  11. Rau DC, Lee B, Parsegian VA (1984) Proc Nat Acad Sci USA 81:2612–2625

    Article  Google Scholar 

  12. Rau DC, Parsegian VA (1992) Biophys J 61:246–259

    CAS  Google Scholar 

  13. Rau DC, Parsegian VA (1990) Science 249:1278–1281

    Article  CAS  Google Scholar 

  14. Leikin S, Rau DC, Parsegian VA (1994) Proc Nat Acad Sci USA 91:276–280

    Article  CAS  Google Scholar 

  15. Israelachvili JN, Adams GE (1976) Nature 262:774–776

    Article  CAS  Google Scholar 

  16. Israelachvili JN, Tandon RK, White LR (1979) Nature 277:120–121

    Article  CAS  Google Scholar 

  17. Israelachivili J, Marra J (1986) Methods Enzymol 127:353–361

    Google Scholar 

  18. Parsegian VA, Rand RP, Fuller NL, Rau RC (1986) Methods in Enzymology 127:400–416

    CAS  Google Scholar 

  19. McIntosh TJ, Simon SA (1986) Biochemistry 25:4058–4066

    Article  CAS  Google Scholar 

  20. Evans E, Metcalfe M (1984) Biophys J 46:423–426

    CAS  Google Scholar 

  21. McIntosh TJ, Simon SA (1993) Biochemistry 32:8374–8384

    Article  CAS  Google Scholar 

  22. McIntosh TJ, Simon SA (1994) Annu Rev Biophys Biomol Struct 23:27–51

    Article  CAS  Google Scholar 

  23. Marcelja S, Radic N (1976) Chem Phys Lett 42:129–130

    Article  CAS  Google Scholar 

  24. McIntosh TJ, Magid AD, Simon SA (1987) Biochemistry 26:7325–7332

    Article  CAS  Google Scholar 

  25. McIntosh TJ, Advani S, Burton RE, Zhelev DV, Needham D, Simon SA (1995) Biochemistry 34:8520–8532

    Article  CAS  Google Scholar 

  26. McIntosh TJ, Simon SA (1996) Colloids and Surfaces A: Physiochemical and Engineering Aspects 116:251–268

    Article  CAS  Google Scholar 

  27. Harbich W, Helfrich W (1984) Chem Phys Lipids 36:39–63

    Article  CAS  Google Scholar 

  28. Helfrich W, Servuss R-M (1984) Il Nuovo Climento 3:137–151

    Article  Google Scholar 

  29. Evans EA, Parsegian VA (1986) Proc Nat Acad Sci USA 83:7132–7136

    Article  CAS  Google Scholar 

  30. Lipowsky R (1995) In: Lipowsky R, Sackman E (eds) Handbook on Physics of Biological Systems. Elsevier Press, New York

    Google Scholar 

  31. Helfrich W (1973) Z Naturforsch 28C:693–703

    CAS  Google Scholar 

  32. Evans E, Needham D (1987) J Phys Chem 91:4219–4228

    Article  CAS  Google Scholar 

  33. Evans E (1991) Langmuir 7:1900–1908

    Article  CAS  Google Scholar 

  34. Podgornik R, Parsegian VA (1992) Langmuir 8:557–562

    Article  CAS  Google Scholar 

  35. Podgornik R, Rau DC, Parsegian VA (1994) Biophys J 66:962–971

    CAS  Google Scholar 

  36. McIntosh TJ, Magid AD, Simon SA (1989) Biochemistry 28:7904–7912

    Article  CAS  Google Scholar 

  37. O'Brien FEM (1948) J Sci Instrum 25:73–76

    Article  Google Scholar 

  38. Weast RC (1984) Handbook of Chemistry and Physics. CRC Press, Boca Raton, Florida

    Google Scholar 

  39. Blaurock AE, Worthington CR (1966) Biophys J 6:305–312

    CAS  Google Scholar 

  40. Herbette L, Marquardt J, Scarpa A, Blasie JK (1977) Biophys J 20:245–272

    Article  CAS  Google Scholar 

  41. Shannon CE (1949) Proc Inst Radio Engrs NY 37:10–21

    Google Scholar 

  42. McIntosh TJ, Magid AD, Simon SA (1989) Biochemistry 28:17–25

    Article  CAS  Google Scholar 

  43. McIntosh TJ, Holloway PW (1987) Biochemistry 26:1783–1788

    Article  CAS  Google Scholar 

  44. McIntosh TJ, Simon SA, Needham D, Huang C-h (1992) Biochemistry 31:2020–2024

    Article  CAS  Google Scholar 

  45. Griffith OH, Dehlinger PJ, Van SP (1974) J Membr Biol 15:159–192

    Article  CAS  Google Scholar 

  46. Worcester DL, Franks NP (1976) J Mol Biol 100:359–378

    Article  CAS  Google Scholar 

  47. Simon SA, McIntosh TJ, Latorre R (1982) Science 216:65–67

    Article  CAS  Google Scholar 

  48. Pearson RH, Pascher I (1979) Nature 281:499–501

    Article  CAS  Google Scholar 

  49. Simon SA, Advani S, McIntosh TJ (1995) Biophys J 69:1473–1483

    CAS  Google Scholar 

  50. McIntosh TJ, Simon SA (1986) Biochemistry 25:4948–4952

    Article  CAS  Google Scholar 

  51. McIntosh TJ, Simon SA (1996) Langmuir 12:1622–1630

    Article  CAS  Google Scholar 

  52. Rand RP, Fuller N, Parsegian VA, Rau DC (1988) Biochemistry 27:7711–7722

    Article  CAS  Google Scholar 

  53. Nagle JF, Wiener MC (1988) Biochim Biophys Acta 942:1–10

    Article  CAS  Google Scholar 

  54. Gruen DWR, Marcelja S (1983) J Chem Soc Faraday Trans 2 79:225–242

    Article  CAS  Google Scholar 

  55. Cevc G, Marsh D (1985) Biophys J 47:21–32

    CAS  Google Scholar 

  56. Israelachvili JN (1991) Intermolecular and Surface Forces. Academic Press, London

    Google Scholar 

  57. Marcus YJ (1991) Chem Soc Faraday Trans 87:2995–2999

    Article  CAS  Google Scholar 

  58. Cevc G, Marsh D (1988) Phospholipid Bilayers, Physical Principles and Models. Wiley, New York

    Google Scholar 

  59. Simon SA, McIntosh TJ (1989) Proc Nat Acad USA 86:9263–9267

    Article  CAS  Google Scholar 

  60. Simon SA, Fink CA, Kenworthy AK, McIntosh TJ (1991) Biophys J 59:538–546

    CAS  Google Scholar 

  61. Simon SA, McIntosh TJ, Magid AD, Needham D (1992) Biophys J 61: 786–799

    Article  CAS  Google Scholar 

  62. Smaby JM, Brockman HL (1990) Biophys J 58:195–204

    CAS  Google Scholar 

  63. Brockman HL (1994) Chem Phys Lipids 73:57–79

    Article  CAS  Google Scholar 

  64. Ebmann U, Perera L, Berkowitz ML (1995) Langmuir 11:4519–4531

    Article  Google Scholar 

  65. McIntosh TJ, Simon SA (1994) Biochemistry 33:10477–10486

    Article  CAS  Google Scholar 

  66. Kenworthy AK, Hristova K, Needham D, McIntosh TJ (1995) Biophys J 68:1921–1936

    Article  CAS  Google Scholar 

  67. Israelachvili JN, Wennerstrom H (1990) Langmuir 6:873–876

    Article  CAS  Google Scholar 

  68. Israelachvili JN, Wennerstrom H (1992) J Phys Chem 96:520–531

    Article  CAS  Google Scholar 

  69. McIntosh TJ, Magid AD, Simon SA (1989) Biophys J 55:897–904

    Article  CAS  Google Scholar 

  70. Tardieu A, Luzzati V, Reman FC (1973) J Mol Biol 75:711–733

    Article  CAS  Google Scholar 

  71. Gingell D, Parsegian VA (1972) J Theor Biol 36:41–51

    Article  CAS  Google Scholar 

  72. Needham D (1995) In: Disalvo EA, Simon SA (eds) Permeability and Stability of Lipid Bilayers. CRC Press, Boca Raton, Florida

    Google Scholar 

  73. Marra J, Israelachvili J (1985) Biochemistry 24:4608–4618

    Article  CAS  Google Scholar 

  74. Simon SA, McIntosh TJ (1986) Methods in Enzymology 127:511–521

    Article  CAS  Google Scholar 

  75. Damodaran KV, Merz KM (1993) Langmuir 9:1179–1183

    Article  CAS  Google Scholar 

  76. Damodaran KV, Merz KM, Jr (1994) Biophys J 66:1076–1087

    CAS  Google Scholar 

  77. Perera L, Essmann U, Berkowitz ML (1996) Langmuir 12:2625–2629

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. Texter

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Steinkopff Verlag

About this paper

Cite this paper

McIntosh, T.J., Simon, S.A. (1997). Experimental tests for thermally-induced fluctuations in lipid bilayers. In: Texter, J. (eds) Amphiphiles at Interfaces. Progress in Colloid & Polymer Science, vol 103. Steinkopff. https://doi.org/10.1007/3-798-51084-9_11

Download citation

  • DOI: https://doi.org/10.1007/3-798-51084-9_11

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-7985-1084-5

  • Online ISBN: 978-3-7985-1662-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics