Skip to main content

Electric birefringence and elastic and quasi-elastic light scattering investigation of the critical behavior of Triton X-100 in aqueous solution

  • Conference paper
  • First Online:
New Trends in Colloid Science

Part of the book series: Progress in Colloid & Polymer Science ((PROGCOLLOID,volume 73))

Abstract

Aqueous solutions of Triton X-100 have been investigated by means of elastic and quasi-elastic light scattering, viscosity, and electric birefringence in the temperature range between room temperature and critical temperature T c . The intensity of scattered light and the correlation length ξ have been found to follow power laws of (TcT)/Tc with exponents equal to those predicted by the renormalisation group theory. Nevertheless some deviations from the Kawasaki-Ferrell universal plot are noted when the correlation range increases much, close to T c . The decay and the rise of the electric birefringence show the presence of two relaxation processes. The fast relaxation process has been attributed to the individual micelles and its analysis has yielded information on the shape and dimension of the Triton X-100 micelles. The slow process which becomes predominant close to T c appears to be due to the micelles clusters, present at these temperature. It yields values of the correlation range in good agreement with those obtained from light scattering. The results show that the micelles are anisodiametric and that fluctuations of micelle concentration are anisotropic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Degiorgio V (1985) In: Degiorgio V, Corti M (eds) Physics of Amphiphile: Micelles, Microemulsions and Vesicles, North Holland, Amsterdam, p 303; Corti M, Degiorgio V (1975) Opt Comm 14:274

    Google Scholar 

  2. Balmbra J, Clunie J, Corkill J, Goodman J (1962) Trans Faraday Soc 58:1661; (1964) 60:979

    Article  CAS  Google Scholar 

  3. Corti M, Degiorgio V (1985) Phys Rev Lett 55:2005

    Article  CAS  Google Scholar 

  4. Degiorgio V, Piazza R, Corti M, Minero C (1985) J Chem Phys 82:1025

    Article  CAS  Google Scholar 

  5. Wheeler JC (1975) J Chem Phys 62:433

    Article  CAS  Google Scholar 

  6. Reatto L, Tan M (1984) Chem Phys Lett 108:292

    Article  CAS  Google Scholar 

  7. Cebula D, Ottewill R (1982) Coll & Polym Sci 260:1118

    Article  CAS  Google Scholar 

  8. Brown W, Johnson R, Stilbs P, Lindman B (1983) J Phys Chem 87:4548

    Article  CAS  Google Scholar 

  9. Ravey JC (1983) J Coll Interf Sci 94:289

    Article  CAS  Google Scholar 

  10. Zulauf M, Weckstrom K, Hayter JB, Degiorgio V, Corti M (1985) J Phys Chem 89:3411

    Article  CAS  Google Scholar 

  11. Kata T, Seimiya T (1986) J Phys Chem 90:3159

    Article  Google Scholar 

  12. Zana R, Weil C (1985) J Phys Lett, Paris 46L:953

    Google Scholar 

  13. Goulon J, Greffe JL, Oxtoby DW (1979) J Chem Phys 70:4742

    Article  CAS  Google Scholar 

  14. Pysuk W, Zboinsky K (1977) Chem Phys Lett 52:577

    Article  Google Scholar 

  15. Degiorgio V, Piazza R (1985) Phys Rev Lett 55:288

    Article  CAS  Google Scholar 

  16. El Seoud O, Vidotti G, Miranda O, Martins A (1980) J Coll Interf Sci 76:265

    Article  CAS  Google Scholar 

  17. Candau SJ, Zana R (1981) J Coll Interf Sci 84:206

    Article  CAS  Google Scholar 

  18. Koppel DE (1972) J Chem Phys 57:4814

    Article  CAS  Google Scholar 

  19. Candau SJ, Dormoy Y, Mutin PH, Debeauvais F, Guenet JM (19??) Polymer, to be published

    Google Scholar 

  20. Valanlikar B, Manohar C (1985) J Coll Interf Sci 108:403

    Article  Google Scholar 

  21. Corti M, Minero C, Degiorgio V (1984) J Phys Chem 88:309

    Article  CAS  Google Scholar 

  22. Wilson KG, Kogut JB (1974) Phys Report 12c:75

    Article  Google Scholar 

  23. Kawasaki K (1968) Phys Lett 26a:543; (1969) 30a:325

    Google Scholar 

  24. Kawasaki K (1970) Phys Rev 1:175C; Ann Phys N Y 61:1

    Google Scholar 

  25. Ferrell (1970) Phys Rev Lett 24:169

    Article  Google Scholar 

  26. Beysens P (1982) NATO Adv Study Ins Ser, Ser B 82, 2, 72:25

    Google Scholar 

  27. Benoit H (1951) Ann Phys, Paris 6:561

    CAS  Google Scholar 

  28. Wright A (1976) J Coll Interf Sci 55:109

    Article  CAS  Google Scholar 

  29. Perrin J (1936) J Phys Rad 6:1

    Article  Google Scholar 

  30. Corti M, Degiorgio V (1981) J Phys Chem 85:1442

    Article  CAS  Google Scholar 

  31. Strey R, Pakusch A (1987) In: Mittal K, Bothorel P (eds) Proceedings of the International Symposium on Surfactants in Solutions, Plenum Press, New York, in press

    Google Scholar 

  32. Guering P, Cazabat AM (1983) J Phys Lett 44:601

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H. Hoffmann

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Dr. Dietrich Steinkopff Verlag GmbH & Co. KG

About this paper

Cite this paper

Dormoy, Y., Hirsch, E., Candau, S.J., Zana, R. (1987). Electric birefringence and elastic and quasi-elastic light scattering investigation of the critical behavior of Triton X-100 in aqueous solution. In: Hoffmann, H. (eds) New Trends in Colloid Science. Progress in Colloid & Polymer Science, vol 73. Steinkopff. https://doi.org/10.1007/3-798-50724-4_66

Download citation

  • DOI: https://doi.org/10.1007/3-798-50724-4_66

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-7985-0724-1

  • Online ISBN: 978-3-7985-1697-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics