Skip to main content

The Art of Evaluating Monitoring Schemes — How to Measure the Performance of Control Charts?

  • Chapter
Frontiers in Statistical Quality Control 8

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aroian, L. A. & Levene, H. (1950). The effectiveness of quality control charts, J. Amer. Statist. Assoc. 45: 520–529.

    Article  MATH  MathSciNet  Google Scholar 

  • Aue, A. & Horvath, L. (2004). Delay time in sequential detection of change, Stat. Probab. Lett. 67: 221–231.

    Article  MATH  MathSciNet  Google Scholar 

  • Barnard, G. A. (1959). Control charts and stochastic processes, J. R. Stat. Soc., Ser. B 21(2): 239–271.

    MATH  Google Scholar 

  • Bather, J. A. (1963). Control charts and minimization of costs, J. R. Stat. Soc, Ser. B 25: 49–80.

    MATH  Google Scholar 

  • Brook, D. & Evans, D. A. (1972). An approach to the probability distribution of CUSUM run length, Biometrika 59(3): 539–549.

    Article  MATH  MathSciNet  Google Scholar 

  • Chang, T. C. & Gan, F. F. (1995). A cumulative sum control chart for monitoring process variance, Journal of Quality Technology 27(2): 109–119.

    Google Scholar 

  • Crosier, R. B. (1986), A new two-sided cumulative quality control scheme, Technometrics 28(3): 187–194.

    Article  MATH  MathSciNet  Google Scholar 

  • Crowder, S. V. & Hamilton, M. D. (1992). An EWMA for monitoring a process standard deviation, Journal of Quality Technology 24(1): 12–21.

    Google Scholar 

  • Dragalin, V. (1988). Asimptoticheskie reshenya zadachi obnaruzhenya razladki pri neizvestnom parametre, Statisticheskie Problemy Upravlenya 83: 47–51.

    MathSciNet  Google Scholar 

  • Dragalin, V. (1994). Optimality of generalized Cusum procedure in quickest detection problem, Proceedings of the Steklov Institute of Mathematics 202(4): 107–119.

    MathSciNet  Google Scholar 

  • Ewan, W. D. & Kemp, K. W. (1960). Sampling inspection of continuous processes with no autocorrelation between results, Biometrika 47: 363–380.

    Article  MATH  MathSciNet  Google Scholar 

  • Frisén, M. (2003). Statistical Surveillance. Optimality and Methods, Int. Stat. Rev. 71(2): 403–434.

    Article  MATH  Google Scholar 

  • Frisén, M. & de Maré, J. (1991). Optimal surveillance, Biometrika 78(2): 271–280.

    Article  MATH  MathSciNet  Google Scholar 

  • Frisén, M. & Wessman, P. (1998). Quality improvements by likelihood ratio methods for surveillance, in B. Abraham (ed.), Quality improvement through statistical methods. International conference, Cochin, India, December 28–31, 1996, Statistics for Industry and Technology, Boston: Birkhäuser, pp. 187–193.

    Google Scholar 

  • Gan, F. F. (1995). Joint monitoring of process mean and variance using exponentially weighted moving average control charts, Technometrics 37: 446–453.

    Article  MATH  Google Scholar 

  • Girshick, M. A. & Rubin, H. (1952). A Bayes approach to a quality control model, Ann. Math. Stat. 23: 114–125.

    MATH  MathSciNet  Google Scholar 

  • Gordon, L. & Pollak, M. (1997). Average run length to false alarm for surveillance schemes designed with partially specified pre-change distribution, Ann. Stat. 25(3): 1284–1310.

    Article  MATH  MathSciNet  Google Scholar 

  • Hawkins, D. M., Qiu, P. & Kang, C. W. (2003). The changepoint model for Statistical Process Control, Journal of Quality Technology 35(4): 355–366.

    Google Scholar 

  • Ho, C. & Case, K. E. (1994a). Economic design of control charts: a literature review for 1981–1991., Journal of Quality Technology 26: 39–53.

    Google Scholar 

  • Ho, C. & Case, K. E. (1994b). The economically-based EWMA control chart, Int. J. Prod. Res. 32(9): 2179–2186.

    MATH  Google Scholar 

  • Hunter, J. S. (1986). The exponentially weighted moving average, Journal of Quality Technology 18: 203–210.

    Google Scholar 

  • Keats, J. B., del Castillo, E., von Collani, E. & Saniga, E. M. (1997). Economic modelling for statistical process control, Journal of Quality Technology 29(2): 144–147.

    Google Scholar 

  • Knoth, S. (2003). EWMA schemes with non-homogeneous transition kernels, Sequential Analysis 22(3): 241–255.

    Article  MATH  MathSciNet  Google Scholar 

  • Knoth, S. (2005a). Accurate ARL computation for EWMA-S 2 control charts, Statistics and Computing 15(4): 341–352.

    Article  MathSciNet  Google Scholar 

  • Knoth, S. (2005b). Computation of the ARL for CUSUM-S 2 schemes, Computational Statistics & Data Analysis in press.

    Google Scholar 

  • Lai, T. L. (1973). Gaussian processes, moving averages and quick detection problems, Ann. Probab. 1(5): 825–837.

    MATH  Google Scholar 

  • Lai, T. L. (1974). Control charts based on weighted sums, Ann. Stat. 2: 134–147.

    MATH  Google Scholar 

  • Lai, T. L. (1995). Sequential changepoint detection in quality control and dynamical systems, J. R. Stat. Soc, Ser. B 57(4): 613–658.

    MATH  Google Scholar 

  • Lai, T. L. (1998). Information bounds and quick detection of parameter changes in stochastic systems, IEEE Transactions on Information Theory 44(7): 2917–2929.

    Article  MATH  Google Scholar 

  • Lai, T. L. (2001). Sequential analysis: Some classical problems and new challenges, Statistica Sinica 11: 303–408.

    MATH  MathSciNet  Google Scholar 

  • Lorden, G. (1971). Procedures for reacting to a change in distribution, Ann. Math. Stat. 42(6): 1897–1908.

    MATH  MathSciNet  Google Scholar 

  • Lucas, J. M. & Crosier, R. B. (1982). Fast initial response for CUSUM quality-control schemes: Give your CUSUM a head start, Technometrics 24(3): 199–205.

    Article  Google Scholar 

  • Lucas, J. M. & Saccucci, M. S. (1990). Exponentially weighted moving average control schemes: Properties and enhancements, Technometrics 32: 1–12.

    Article  MathSciNet  Google Scholar 

  • Madsen, R. W. & Conn, P. S. (1973). Ergodic behavior for nonnegative kernels, Ann. Probab. 1: 995–1013.

    MATH  MathSciNet  Google Scholar 

  • Margavio, T. M., Conerly, M. D., Woodall, W. H. & Drake, L. G. (1995). Alarm rates for quality control charts, Stat. Probab. Lett. 24: 219–224.

    Article  MATH  Google Scholar 

  • Mei, Y. (2003). Asymptotically optimal methods for sequential change-point detection, Ph. D. dissertation, California Institute of Technology.

    Google Scholar 

  • Mevorach, Y. & Pollak, M. (1991). A small sample size comparison of the Cusum and Shiryayev-Roberts approaches to changepoint detection, American Journal of Mathematical and Management Sciences 11: 277–298.

    MATH  Google Scholar 

  • Mittag, H.-J., Stemann, D. & Tewes, B. (1998). EWMA-Karten zur Überwachung der Streuung von Qualitätsmerkmalen, Allgemeines Statistisches Archiv 82: 327–338.

    Google Scholar 

  • Morais, M. C. (2002). Stochastic ordering in the performance analysis of quality control schemes, Ph. D. dissertation, Instituto Superior Tëcnico, Technical University of Lisbon.

    Google Scholar 

  • Morais, M. C. & Pacheco, A. (1998). Two stochastic properties of one-sided exponentially weighted moving average control charts, Commun. Stat. Simula. Comput. 27(4): 937–952.

    MATH  Google Scholar 

  • Moustakides, G. V. (1986). Optimal stopping times for detecting changes in distributions, Ann. Stat. 14(4): 1379–1387.

    MATH  MathSciNet  Google Scholar 

  • Novikov, A. (1990). On the first passage time of an autoregressive process over a level and a application to a “disorder” problem, Theor. Probability Appl. 35: 269–279. translation from Novi:1990a.

    Article  MATH  Google Scholar 

  • Page, E. S. (1954a). Continuous inspection schemes, Biometrika 41: 100–115.

    Article  MATH  MathSciNet  Google Scholar 

  • Page, E. S. (1954b). Control charts for the mean of a normal population, J. R. Stat. Soc, Ser. B 16: 131–135.

    MATH  MathSciNet  Google Scholar 

  • Pollak, M. (1985). Optimal detection of a change in distribution, Ann. Stat. 13: 206–227.

    MATH  MathSciNet  Google Scholar 

  • Pollak, M. & Siegmund, D. (1985). A diffusion process and its applications to detecting a change in the drift of brownian motion, Biometrika 72(2): 267–280.

    Article  MATH  MathSciNet  Google Scholar 

  • Poor, H. V. (1998). Quickest detection with exponential penalty for delay, Ann. Stat. 26(6): 2179–2205.

    Article  MATH  MathSciNet  Google Scholar 

  • Ritov, Y. (1990). Decision theoretic optimality of the CUSUM procedure, Ann. Stat. 18(3): 1464–1469.

    MATH  MathSciNet  Google Scholar 

  • Roberts, S. W. (1959). Control-charts-tests based on geometric moving averages, Technometrics 1: 239–250.

    Article  Google Scholar 

  • Roberts, S. W. (1966). A comparison of some control chart procedures, Technometrics 8: 411–430.

    Article  MathSciNet  Google Scholar 

  • Shewhart, W. A. (1931). Economic Control of Quality of Manufactured Product, D. van Nostrand Company, Inc., Toronto.

    Google Scholar 

  • Shiryaev, A. N. (1963a). Ob otimal’nykh metodakh v zadachakh skorejshego obnaruzheniya, Teoriya Veroyatnostei i eye primeneniya 8(1): 26–51. in Russian.

    MATH  Google Scholar 

  • Shiryaev, A. N. (1963b). On optimum methods in quickest detection problems, Theor. Probability Appl. 8: 22–46.

    Article  MATH  Google Scholar 

  • Shiryaev, A. N. (1976). Statistical sequential analysis. Optimal stopping rules. (Statisticheskij posledovatel’nyj analiz. Optimal’nye pravila ostanovki), Moskva: Nauka.

    MATH  Google Scholar 

  • Shiryaev, A. N. (2001). Essentials of the arbitrage theory, Part III. http://www.ipam.ucla.edu/publications/fm2001/ashiryaevl.pdf.

    Google Scholar 

  • Tartakovsky, A. G. (1995). Asymptotic properties of CUSUM and Shiryaev’s procedures for detecting a change in a nonhomogeneous gaussian process, Math. Methods Stat. 4(4): 389–404.

    MATH  MathSciNet  Google Scholar 

  • Woodall, W. H. (1983). The distribution of the run length of one-sided CUSUM procedures for continuous random variables, Technometrics 25: 295–301.

    Article  MATH  MathSciNet  Google Scholar 

  • Woodall, W. H. & Maragah, H. D. (1990). Discussion of “exponentially weighted moving average control schemes: Properties and enhancements”, Technometrics 32: 17–18.

    Article  Google Scholar 

  • Woodall, W. H. & Montgomery, D. C. (1999). Research issues and ideas in statistical process control, Journal of Quality Technology 31(4): 376–386.

    Google Scholar 

  • Yakir, B. (1998). On the average run length to false alarm in surveillance problems which possess an invariance structure, Ann. Stat. 26(3): 1198–1214.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Physica-Verlag Heidelberg

About this chapter

Cite this chapter

Knoth, S. (2006). The Art of Evaluating Monitoring Schemes — How to Measure the Performance of Control Charts?. In: Lenz, HJ., Wilrich, PT. (eds) Frontiers in Statistical Quality Control 8. Physica-Verlag HD. https://doi.org/10.1007/3-7908-1687-6_5

Download citation

Publish with us

Policies and ethics