Advertisement

Innovative Risikobewertungsverfahren als Instrumente nachhaltiger Chemikalienpolitik

  • Michael Faust
  • Thomas Backhaus
Chapter
Part of the Nachhaltigkeit und Innovation book series (NACHHALTIGKEIT)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Altenburger R, Backhaus T, Boedeker W, Faust M, Scholze M, Grimme LH (2000) Predictability of the toxicity of multiple chemical mixtures to Vibrio fischeri: Mixtures composed of similarly acting chemicals. Environ Toxicol Chem 19: 2341–2347CrossRefGoogle Scholar
  2. Altenburger R, Boedeker W, Faust M, Grimme LH (1993) Aquatic toxicology — Analysis of combination effects. In: Corn M (ed) Handbook of Hazardous Materials. Academic Press, San Diego, pp 15–27Google Scholar
  3. Altenburger R, Nendza M, Schüürmann G (2003) Mixture toxicity and its modeling by quantitative structure-activity relationships. Environ Toxicol Chem 22: 1900–1915PubMedCrossRefGoogle Scholar
  4. Anderson PD, Weber LJ (1975) The toxicity to aquatic populations of mixtures containing certain heavy metals. Proceedings of the International Conference on Heavy Metals in the Environment. Toronto, 27–31 October 1975, vol 2, pp 933–953Google Scholar
  5. Backhaus T, Altenburger R, Arrhenius Å, Blanck H, Faust M, Finizio A, Gramatica P, Grote M, Junghans M, Meyer M, Pavan M, Porsbring T, Scholze M, Todeschini R, Vighi M, Walter H, Grimme KH (2003) The BEAM-project: Prediction and assessment of mixture toxicities in the aquatic environment. Continental Shelf Research 23: 1757–1769CrossRefADSGoogle Scholar
  6. Backhaus T, Altenburger R, Boedeker W, Faust M, Scholze M., Grimme LH (2000) Predictability of the toxicity of a multiple mixture of dissimilarly acting chemicals to Vibrio fischeri. Environ Toxicol Chem 19: 2348–2356CrossRefGoogle Scholar
  7. Backhaus T, Faust M, Scholze M, Gramatica P, Vighi M, Grimme LH (2004) Joint algal toxicity of phenylurea herbicides is equally predictable by concentration addition and independent action. Environ Toxicol Chem 23: 258–264PubMedCrossRefGoogle Scholar
  8. Backhaus T, Scholze M, Grimme LH (2000) The single substance and mixture toxicity of quinolones to the bioluminescent bacterium Vibrio fischeri. Aquat Toxicol 49: 49–61PubMedCrossRefGoogle Scholar
  9. Berenbaum MC (1985) The expected effect of a combination of agents: the general solution. J Theor Biol 114: 413–431PubMedCrossRefGoogle Scholar
  10. Berenbaum MC (1989) What is synergy? Pharmacol Rev 41: 93–141PubMedGoogle Scholar
  11. Bias R (2004) REACH und QSAR — gemeinsame Aufgabe von Industrie und Wissenschaft. Mitteilungen der Fachgruppe Umweltchemie und Ökotoxikologie 10(1), EditorialGoogle Scholar
  12. Bodar CWM, Berthault F, de Bruijn JHM, van Leeuwen CJ, Pronk MEJ, Vermeire TG (2003) Evaluation of EU risk assessment existing chemicals (EC Regulation 793/93). Chemosphere 53: 1039–1047PubMedCrossRefGoogle Scholar
  13. Bödeker W, Drescher K, Altenburger R, Faust M, Grimme LH (1993) Combined effects of toxicants: The need and soundness of assessment approaches in ecotoxicology. Sci Total Environ, Supplement, 931–939Google Scholar
  14. Boedeker W, Altenburger R, Faust M, Grimme LH (1992) Synopsis of concepts and models for the quantitative analysis of combination effects: from biometrics to ecotoxicology. Archives of Complex Environmental Studies 4(3): 45–53Google Scholar
  15. Broderius SJ, Kahl MD, Hoglund MD (1995) Use of joint toxic responses to define the primary mode of toxic action for diverse industrial organic chemicals. Environ Toxicol Chem 14: 1591–1605CrossRefGoogle Scholar
  16. BUAV (The British Union for the Abolition of Vivisection) and ECEAE (European Coalition to End Animal Experiments) (2001). The way forward — Action to end animal toxicity testing. Report compiled for the BUAV by Dr Gill Langley. (available at http://www.eceae.org/pdf/TheWayForward_part1.pdf)Google Scholar
  17. Burczynski ME, McMillian M, Ciervo J, Li L, Parker JB, Dunn RT, Hicken S, Farr S, Johnson MD (2000) Toxicogenomics-based discrimination of toxic mechanism in HepG2 human hepatoma cells. Toxicol Sci 58: 399–415PubMedCrossRefGoogle Scholar
  18. Calamari D, Vighi M (1992) A proposal to define quality objectives for aquatic life for mixtures of chemical substances. Chemosphere 25: 531–542CrossRefGoogle Scholar
  19. CEC (Commission of the European Communities) (2001a). A sustainable Europe for a better world: A European Union strategy for sustainable development. Brussels, 15.5.2001, COM(2001) 264 final. (zitiert in der amtlichen deutschen Textversion)Google Scholar
  20. CEC (Commission of the European Communities) (2001b). White Paper „Strategy for a future chemicals policy“. Brussels, 27.2.2001, COM(2001) 88 finalGoogle Scholar
  21. CEC (Commission of the European Communities) (2003a) A European environment and health strategy. Communication from the Commission to the Council, the European Parliament and the European Economic and Social Committee. Brussels, COM (2003) 338 finalGoogle Scholar
  22. CEC (Commission of the European Communities) (2003b). Proposal for a regulation of the European Parliament and the Council concerning the registration, evaluation, authorisation and restriction of chemicals (REACH), establishing a European Chemicals Agency and amending directive 1999/45/EC and regulation (EC) on persistent organic pollutants. Brussels, 29.10.2003, COM(2003) 644 final. (Zitate aus dem Englischen übersetzt)Google Scholar
  23. Combes R, Barrat M, Balls M (2003). An overall strategy for the testing of chemicals for human hazard and risk assessment under the EU REACH system. ATLA 31: 7–19PubMedGoogle Scholar
  24. Corn M (ed) (1993) Handbook of Hazardous Materials. Academic Press, San DiegoGoogle Scholar
  25. Cronin MTD (2002). The current status and future applicability of quantitative structure-activity relationships (QSARs) in predicting toxicity. ATLA 30,Supplement 2, 81–84PubMedGoogle Scholar
  26. Cronin MTD, Walker JD, Jaworska, JS, Comber MHI, Watts CD, Worth AP (2003a) Use of QSARs in international decision-making framework to predict ecologic effects and environmental fate of chemical substances. Environ Health Perspect 111: 1376–1390PubMedCrossRefGoogle Scholar
  27. Cronin MTD, Jaworska, JS, Walker JD, Comber MHI, Watts CD, Worth AP (2003b) Use of QSARs in international decision-making framework to predict health effects of chemical substances. Environ Health Perspect 111: 1391–1401PubMedCrossRefGoogle Scholar
  28. Danish EPA (Danish Environmental Protection Agency) (2001) Report on the advisory list for selfclassification of dangerous substances. Environmental Project no. 636. (available at http://www.mst.dk)Google Scholar
  29. De Wolf W, Canton JH, Deneer JW, Wegmann RCC, Hermens JLM (1988) Quantitative structure-activity relationships and mixture-toxicity studies of alcohols and chlorohydrocarbons: reproducibility of effects on growth and reproduction of Daphnia magna. Aquatic Toxicol 12: 39–49CrossRefGoogle Scholar
  30. EC (European Commission) (2003a) The future of risk assessment in the European Union. The second report on the harmonization of risk assessment procedures. SSC (Scientific Steering Committee), Health & Consumer Protection Directorate-General, European CommissionGoogle Scholar
  31. EC (European Commission) (2003b) Technical guidance document on risk assessment in support of Commission Directive 93/67/EEC on risk assessment for new notified substances, Commission Regulation (EC) No. 1488/94 on risk assessment for existing substances, Directive 98/8/EC of the European Parliament and of the Council concerning the placing of biocidal products on the market. Part I–IV. European Commission, Joint Research Center, Institute for Health and Consumer Protection, European Chemicals, EUR 20418 EN/1-4Google Scholar
  32. EC (European Commission) (2004) Opinion of the Scientific Committee on Toxicity, Ecotoxicity and the Environment (CSTEE) on the BUAV-ECEAE report on „The way forward — Action to end animal toxicity testing“. Adopted by the CSTEE during the 41st plenary meeting of 8 January 2004. Health & Consumer Protection Directorate-General, Directorate C — Public Health and Risk Assessment, C7 — Risk Assessment, Brussels, C7/VR/csteeop/anat/080104 D(04)Google Scholar
  33. ECB (European Chemicals Bureau) (2004) (available at http://ecb.jrc.it/existing-chemicals/, 01.08.04)Google Scholar
  34. EIFAC (European Inland Fisheries Advisory Commission, Working Party on Water Quality Criteria for European freshwater fish) (1987) Revised report on combined effects on freshwater fish and other aquatic life of mixtures of toxicants in water. EIFAC Tech Pap 37, Rev 1Google Scholar
  35. EP&C (European Parliament and the Council) (2002) Decision No. 1600/2002/EC of the European Parliament and of the Council of July 2002 laying down the sixth community environment action programme. Official Journal of the European Communities, 10.9.2002, L 242/1-15Google Scholar
  36. Esbjerg Declaration (1995) Ministerial declaration of the 4th international conference on the protection of the north sea. Esbjerg, 8–9 June 1995. (available at http://odin.dep.no/md/nsc/declaration/022001-990243/dok-bn.html#l.MINISTERIAL). (Zitate aus dem Englischen übersetzt)Google Scholar
  37. European Council (2001) Gothenborg European Council, 15 and 16 June 2001 — presidency conclusions. SN 200/01. (zitiert in der amtlichen deutschen Textversion)Google Scholar
  38. Faust M, Altenburger R, Backhaus T, Blanck H, Boedeker W, Gramatica P, Hamer V, Scholze M, Vighi M, Grimme LH (2001) Predicting the joint algal toxicity of multi-component s-triazine mixtures at low-effect concentrations of individual toxicants. Aquat Toxicol 56: 13–32PubMedCrossRefGoogle Scholar
  39. Faust M, Altenburger R, Backhaus T, Blanck H, Boedeker W, Gramatica P, Hamer V, Scholze M, Vighi M, Grimme LH (2003) Joint algal toxicity of 16 dissimilarly acting chemicals is predictable by the concept of independent action. Aquatic Toxicol 63: 43–63CrossRefGoogle Scholar
  40. Faust M, Scholze M (2003) Competing concepts for the prediction of mixture toxicity: Do the differences matter for regulatory purposes? EU-Project BEAM — EVK1-CT1999-00012, Workpackage 7 — Options for predictive mixture toxicity assessment, Final Report to project partners, consultants, and European Commission services. (publication in the open scientific literature in preparation)Google Scholar
  41. FOE (Friends of the Earth) 2000 Crisis in Chemicals — The threat posed by the „Biomedical Revolution“ to the profits, liabilities, and regulation of industries making and using chemicals. Written by Warhurst M with assistance of Childs M, Taylor M, Bullock S, Smeardon L, Humber S, Hartley R on behalf of FOE. (available at http://www.foe.co.uk/resource/reports/crisis_chemicals.pdf)Google Scholar
  42. FOE (Friends of the Earth) (2002) Crisis in Chemicals Update. Report written by Warhurst AM (available at http://www.foe.co.uk/resource/reports/crisis_chemicals_update.pdf)Google Scholar
  43. Gramatica P, Vighi M, Consolaro F, Todeschini R, Finizio A, Faust M (2001) QSAR approach for the selection of congeneric compounds with a similar toxicological mode of action. Chemosphere 42: 873–883PubMedCrossRefGoogle Scholar
  44. Greco WR, Bravo G, Parsons JC (1995) The search for synergy: a critical review from a response surface perspective. Pharmacol Rev 47: 331–385PubMedGoogle Scholar
  45. Greco WR, Unkelbach H-D, Pöch G, Sühnel J, Kundi M, Bödeker W (1992) Consensus on concepts and terminology for combined action assessment: The Saariselkä agreement. Archives of Complex Environmental Studies 4(3): 65–69Google Scholar
  46. Gressel J (1990) Synergizing herbicides. Rev Weed Sci 5: 49–82Google Scholar
  47. Hartung T, Bremer S, Casati S, Coecke S, Corvi R, Fortaner S, Gribaldo L, Haider M, Roi AJ, Prieto P, Sabbioni E, Worth A, Zuang V (2003) ECVAM’s response to the changing political environment for alternatives: Consequences of the European Union chemicals and cosmetics policies. ATLA 31: 473–481PubMedGoogle Scholar
  48. Hewlett PS, Plackett RL (1979) The interpretation of quantal responses in biology. Edward Arnold, LondonGoogle Scholar
  49. IEH (Institute for Environment and Health) (2001) Testing requirements for proposals under the EC White Paper „Strategy for a future chemicals policy“. Web Report W6, Leicester (UK). (available at http://www.le.ac.uk/ieh/webpub/webpub.html, posted July 2001)Google Scholar
  50. ILSI (International Life Sciences Institute) Health and Environmental Sciences Institute (2003) Technical Committee on Application of Genomics to Mechanism-Based Risk Assessment: Status, findings and next Steps, March 2003 (available at http://hesi.ilsi.org/file/ACF5D34.pdf)Google Scholar
  51. Junghans M, Backhaus T, Faust M, Scholze M, Grimme LH (2003a) Predictability of combined effects of 8 chloroacetanilide herbicides on algal reproduction. Pest Management Science 59: 1101–1110PubMedCrossRefGoogle Scholar
  52. Junghans M, Backhaus T, Faust M, Scholze M, Grimme LH (2003b) Toxicity of sulfonylurea herbicides to the green alga Scenedesmus vacuolatus: Predictability of combination effects. Bull Environ Contam Toxicol 71: 585–593PubMedCrossRefGoogle Scholar
  53. Kalberlah F, Schneider K (1998) Quantification of extrapolation factors. Wirtschaftsverlag NW, BremerhavenGoogle Scholar
  54. Kodell RL, Pounds JG (1991) Assessing the toxicity of mixtures of chemicals. In: Krewski D, Franklin C (eds) Statistics in Toxicology. Gordon and Breach, New York, pp 559–591Google Scholar
  55. Könemann WH, Pieters MN (1996) Confusion of concepts in mixture toxicology. Food Chem Toxicol 34: 1025–1031PubMedCrossRefGoogle Scholar
  56. Krewski D, Franklin C (eds) (1991) Statistics in Toxicology. Gordon and Breach, New YorkGoogle Scholar
  57. Marchant GE (2002) Toxicogenomics and toxic torts. Trends in Biotechnology 20: 329–332PubMedCrossRefGoogle Scholar
  58. Marchant GE (2003) Genomics and toxic substances: Part II — Genetic susceptibility to environmental agents. Environmental Law Reporter 33: 10641–10667Google Scholar
  59. Merrick BA, Tomer KB (2003) Toxicoproteomics: A parallel approach to identifying bio-markers. Environ Health Perspect 111: A578–579PubMedCrossRefGoogle Scholar
  60. Mumatz MM, DeRosa CT, Durkin PR (1994) Approaches and challenges in risk assessment of chemical mixtures. In: Yang RSH (ed) Toxicology of Chemical Mixtures. Academic Press, San Diego, pp 565–597Google Scholar
  61. Munns Jr WR, Suter II GW, Damstra T, Kroes R, Reiter LW, Marafante E (2003) Integrated risk assessment — Results from an international workshop. Hum Ecol Risk Assess 9: 379–386CrossRefGoogle Scholar
  62. Oberemm A, Gundert-Remy U (2003) Toxicogenomics: Der Einsatz von Genexpressionsanalysen für die Risikobewertung von Chemikalien. Mitteilungen der Fachgruppe Umweltchemie und Ökotoxikologie 9(1): 6–8Google Scholar
  63. Payne J, Scholze M, Kortenkamp A (2001) Mixtures of four organochlorines enhance human breast cancer cell proliferation. Environ Health Perspect 109(4): 391–397PubMedCrossRefGoogle Scholar
  64. Pedersen F, de Bruijn J, Munn S, van Leeuwen K (2003a) Assessment of additional testing needs under REACH — Effects of (Q)SARs, risk based testing and voluntary initiatives. European Commission, Directorate General JRC, Joint Research Centre, Institute for Health and Consumer Protection (available at http://europa.eu.int/comm/enterprise/reach/docs/reach/testing_needs-2003_10_29.pdf)Google Scholar
  65. Pedersen F, de Bruijn J, Munn S, Worth A, van Leeuwen K (2003b) The cost-saving potential of QSARs. Stakeholder Workshop on Impact Assessment of REACH, 21 November 2003, Brussels. European Commission, Directorate General Joint Research Centre, IHCP (Institute for Health and Consumer Protection) (available at http://europa.eu.int/comm/enterprise/reach/docs/reach/presentat2-2003_11_21.pdf)Google Scholar
  66. Pennie W, Pettit SD, Lord PG (2004) Toxicogenomics in risk assessment: An overview of an HESI collaborative research program. Environ Health Perspect 112: 417–419PubMedCrossRefGoogle Scholar
  67. Plackett RL, Hewlett PS (1967) A comparison of two approaches to the construction of models for quantal responses to mixtures of drugs. Biometrics 23: 27–44PubMedCrossRefGoogle Scholar
  68. Pöch G (1993) Combined effects of drugs and toxic agents. Modern evaluation in theory and practice. Springer, WienGoogle Scholar
  69. Rajapakse N, Silva E, Kortenkamp A (2002) Combining xenoestrogens at levels below individual No-observed-effect concentrations dramatically enhances steroid hormone action. Environ Health Perspect 110(9): 917–921PubMedCrossRefGoogle Scholar
  70. Risikokommission (2003) Ad hoc-Kommission „Neuordnung der Verfahren und Strukturen zur Risikobewertung und Standardsetzung im gesundheitlichen Umweltschutz der Bundesrepublik Deutschland“. Abschlußbericht der Risikokommission. Im Auftrag des Bundesministers für Gesundheit und Soziale Sicherung und des Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit. Geschäftsstelle der Risikokommission beim Bundesamt für Strahlenschutz, SalzgitterGoogle Scholar
  71. Schmidt CW (2004) Metabolomics: what’s happening downstream of DNA. Environ Health Perspect 112: A410–415PubMedGoogle Scholar
  72. Scholze M, Boedeker W, Faust M, Backhaus T, Altenburger R, Grimme LH (2001) A general best fit method for concentration-response curves and the estimation of low effect concentrations. Environ Toxicol Chem 20: 448–457PubMedCrossRefGoogle Scholar
  73. Silva E, Rajapakse N, Kortenkamp A (2002) Something from „nothing“ — Eight weak estrogenic chemicals combined at concentrations below NOECs produce significant mixture effects. Environ Sci Technol 36(8): 1751–1756PubMedCrossRefGoogle Scholar
  74. Streffer C, Bücker J, Cansier A, Cansier D, Gethmann CF, Guderian R, Hankamp G, Henschler D, Pöch G, Rehbinder E, Renn O, Slesina M, Wuttke K (2000) Umweltstandards — Kombinierte Exposition und ihre Auswirkungen auf den Menschen und seine Umwelt. Springer, BerlinGoogle Scholar
  75. Svendsgaard DJ, Hertzberg RC (1994) Statistical methods for the toxicological evaluation of the additivity assumption as used in the Environmental Protection Agency Chemical Mixture Risk Assessment Guidelines. In: Yang RSH (ed) Toxicology of Chemical Mixtures. Academic Press, San Diego, pp 599–642Google Scholar
  76. Tinwell H, Ashby J (2004) Sensitivity of the immature rat uterotrophic assay to mixtures of estrogens. Environ Health Perspect 112(5): 575–582PubMedCrossRefGoogle Scholar
  77. Travis CC, Bishop WE, Clarke DP (2003) The genomic revolution: What does it mean for human and ecological risk assessment? Ecotoxicology 12: 489–495PubMedCrossRefGoogle Scholar
  78. TWG Research Needs (Technical Working Group on Research Needs appointed by the European Commission within the Environment & Health Strategy) (2004) Research needs in the framework of the European environment and health strategy ((COM 2003) 338 final) — Proposal for actions. February 27, 2004. (http://www.brussels-conference.org/Download/Proposal_for_Actions_TWG_Research_Needs_fin.pdf)Google Scholar
  79. UN (United Nations) (2002) Report of the world summit on sustainable development, Johannesburg, South Africa, 26 August–4 September 2002. A/CONF.199/20, United Nations, New York. (Zitate aus dem Englischen übersetzt)Google Scholar
  80. US EPA (United States Environmental Protection Agency) (2003) Framework for cumulative risk assessment. USEPA/600/P-02/00F, Office of Research and Development, National Center for Environmental Assessment, Washington Office, Washington D.C.Google Scholar
  81. Van Leeuwen CJ, Verhaar HJM, Hermens JLM (1996) Quality Criteria and risk assessment for mixtures of chemicals in the aquatic environment. Hum Ecol Risk Assess 2: 419–425Google Scholar
  82. Vighi M, Altenburger R, Arrhenius Å, Backhaus T, Boedeker W, Blanck H, Consolaro F, Faust M, Finizio A, Froehner K, Gramatica P, Grimme LH, Grönvall F, Hamer V, Scholze M, Walter H (2003) Water quality objectives for mixtures of toxic chemicals: problems and perspectives. Ecotoxicol Environ Saf 54: 139–150PubMedCrossRefGoogle Scholar
  83. Walter H, Consolaro F, Gramatica P, Scholze M, Altenburger R (2002) Mixture toxicity of priority pollutants at no observed effect concentrations (NOECs). Ecotoxicology 11: 299–310PubMedCrossRefGoogle Scholar
  84. Waters M, Boorman G, Bushel P, Cunningham M, Irwin R, Merrick A, Olden K, Paules R, Selkirk J, Stasiewicz S, Weis B, Van Houten B, Walker N, Tennant R (2003) Systems toxicology and the chemical effects in biological systems (CEBS) knowledge base. Environ Health Perspect 111: 811–824CrossRefGoogle Scholar
  85. WHO (World Health Organisation) (2001) Integrated risk assessment. Report prepared for the WHO/UNEP/ILO International Programme on Chemical Safety. Hum Ecol Risk Assess 9: 267–386. (available at http://www.who.int/pcs/emerg_site/integr_ra/ira_report.htm). (Zitate aus dem englischen übersetzt)Google Scholar
  86. Worth A, Balls M (ed) (2002) Alternative (non-animal) methods for chemical testing. Current status and future prospects. A report prepared by ECVAM and the ECVAM working group on chemicals. ATLA 30,Supplement 1, pp 125 (Zitate aus dem Englischen übersetzt)Google Scholar
  87. WWF (World Wildlife Fund) (2004) Chemical check up — An analysis of chemicals in the blood of members of the European Parliament. WWF DetoX Campaign, Brussels. (available at http://www.panda.org/downloads/europe/checkupmain.pdf)Google Scholar
  88. Xu S, Nirmalakhandan N (1998) Use of QSAR models in predicting joint effects in multi-component mixtures of organic chemicals. Water Resources 32: 2391–2399Google Scholar
  89. Yang RSH (1994) Introduction to the toxicology of chemical mixtures. In: Yang RSH (ed) Toxicology of Chemical Mixtures. Academic Press, San Diego, pp 1–10Google Scholar
  90. Yang RSH (ed) (1994) Toxicology of Chemical Mixtures. Academic Press, San DiegoGoogle Scholar

Copyright information

© Physica-Verlag Heidelberg 2005

Authors and Affiliations

  • Michael Faust
    • 1
  • Thomas Backhaus
    • 2
  1. 1.Faust und Backhaus Environmental ConsultingBremer Innovations- und TechnologiezentrumBremen
  2. 2.Fachbereich Biologie/Chemie der Universität BremenBremen

Personalised recommendations