Skip to main content

The Number of Near-Coherence Classes of Ultrafilters is Either Finite or \( 2^\mathfrak{c} \)

  • Chapter
Set Theory

Part of the book series: Trends in Mathematics ((TM))

Abstract

We prove that the number of near-coherence classes of non-principal ultrafilters on the natural numbers is either finite or \( 2^\mathfrak{c} \). Moreover, in the latter case the Stone-Čech compactification βω of ω contains a closed subset C consisting of \( (\mathfrak{r} < \mathfrak{u}) \) pairwise non-nearly-coherent ultrafilters. We obtain some additional information about such closed sets under certain assumptions involving the cardinal characteristics \( (\mathfrak{r} < \mathfrak{u}) \) and \( 2^\mathfrak{c} \).

Applying our main result to the Stone-Čech remainder β+−ℝ+ of the half-line ℝ+ = [0,∞) we obtain that the number of composants of β+ − ℝ+ is either finite or \( 2^\mathfrak{c} \).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jason Aubrey, “Combinatorics for the dominating and unsplitting numbers,” J. Symbolic Logic 69 (2004) 482–498.

    Article  MATH  MathSciNet  Google Scholar 

  2. Taras Banakh and Lyubomyr Zdomskyy, Coherence of Semifilters, http://www.franko.lviv.ua/faculty/mechmat/Departments/Topology/booksite.html

    Google Scholar 

  3. James Baumgartner, “Ultrafilters on ω,” J. Symbolic Logic 60 (1995) 624–639.

    Article  MATH  MathSciNet  Google Scholar 

  4. Andreas Blass, Orderings of Ultrafilters, Ph.D. thesis, Harvard University (1970).

    Google Scholar 

  5. Andreas Blass, “Near coherence of filters, I: Cofinal equivalence of models of arithmetic,” Notre Dame J. Formal Logic 27 (1986) 579–591.

    Article  MATH  MathSciNet  Google Scholar 

  6. Andreas Blass, “Near coherence of filters, II: Applications to operator ideals, the Stone-Čech remainder of a half-line, order ideals of sequences, and slenderness of groups,” Trans. Amer. Math. Soc. 300 (1987) 557–581.

    Article  MATH  MathSciNet  Google Scholar 

  7. Andreas Blass and Heike Mildenberger, “On the cofinality of ultrapowers,” J. Symbolic Logic 64 (1999) 727–736.

    Article  MATH  MathSciNet  Google Scholar 

  8. Andreas Blass and Saharon Shelah, “There may be simple P1 and P2 points and the Rudin-Keisler order may be downward directed,” Ann. Pure Appl. Logic 33 (1987) 213–243.

    Article  MATH  MathSciNet  Google Scholar 

  9. Andreas Blass and Saharon Shelah, “Ultrafilters with small generating sets,” Israel J. Math. 65 (1989) 259–271.

    MATH  MathSciNet  Google Scholar 

  10. David Booth, “Ultrafilters on a countable set,” Ann. Math. Logic 2 (1970) 1–24.

    Article  MATH  MathSciNet  Google Scholar 

  11. Martin Goldstern and Saharon Shelah, “Ramsey ultrafilters and the reaping number — Con\( \mathfrak{d} \),” Ann. Pure Appl. Logic 49 (1990) 121–142.

    Article  MATH  MathSciNet  Google Scholar 

  12. Jussi Ketonen, “On the existence of P-points in the Stone-Čech compactification of integers,” Fund. Math. 92 (1976) 91–94.

    MATH  MathSciNet  Google Scholar 

  13. Kenneth Kunen, “Weak P-points inℕ*,” Topology, Colloq. Math. Soc. János Bolyai 23, ed. Á. Császár, North-Holland (1980) 741–749.

    Google Scholar 

  14. Stefan Mazurkiewicz, “Sur les continus indécomposables,” Fund. Math. 10 (1927) 305–310.

    MATH  Google Scholar 

  15. Jerzy Mioduszewski, “On composants of βR−R,” Proc. Conf. Topology and Measure (Zinnowitz, 1974), ed. J. Flachsmeyer, Z. Frolík, and F. Terpe, Ernst-Moritz-Arndt-Universität zu Greifswald (1978) 257–283.

    Google Scholar 

  16. Jerzy Mioduszewski, “An approach to β R−R,” Topology, Colloq. Math. Soc. János Bolyai 23, ed. Á. Császár, North-Holland (1980) 853–854.

    Google Scholar 

  17. Bedřich Pospíšil, “Remark on bicompact spaces,” Ann. Math. (2) 38 (1937) 845–846.

    Article  Google Scholar 

  18. Fritz Rothberger, “On some problems of Hausdorff and Sierpiński,” Fund. Math. 35 (1948) 29–46.

    MATH  MathSciNet  Google Scholar 

  19. Mary Ellen Rudin, “Types of ultrafilters,” Topology Seminar Wisconsin, 1965, eds. R.H. Bing and R.J. Bean, Annals of Mathematics Studies 60 (1966) 147–151.

    Google Scholar 

  20. Mary Ellen Rudin, “Composants and βN,” Proc. Washington State Univ. Conf. on General Topology (1970) 117–119.

    Google Scholar 

  21. Walter Rudin, “Homogeneity problems in the theory of Čech compactifications,” Duke Math. J. 23 (1956) 409–419

    Article  MATH  MathSciNet  Google Scholar 

  22. Saharon Shelah, “There may be no nowhere dense ultrafilter,” Logic Colloquium’ 95 (Haifa), eds. J.A. Makowsky and E.V. Ravve, Lecture Notes in Logic 11, Springer-Verlag (1998) 305–324.

    Google Scholar 

  23. Edward Wimmers, “The Shelah P-point independence theorem,” Israel J. Math. 43 (1982) 28–48.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Banakh, T., Blass, A. (2006). The Number of Near-Coherence Classes of Ultrafilters is Either Finite or \( 2^\mathfrak{c} \) . In: Bagaria, J., Todorcevic, S. (eds) Set Theory. Trends in Mathematics. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7692-9_8

Download citation

Publish with us

Policies and ethics