Skip to main content

Real-valued Measurable Cardinals and Well-orderings of the Reals

  • Chapter
Set Theory

Part of the book series: Trends in Mathematics ((TM))

Abstract

We show that the existence of atomlessly measurable cardinals is incompatible with the existence of well-orderings of the reals in L(ℝ), but consistent with the existence of well-orderings of the reals that are third-order definable in the language of arithmetic. Specifically, we provide a general argument that, starting from a measurable cardinal, produces a forcing extension where c is real-valued measurable and there is a Δ 22 -well-ordering of ℝ. A variation of this idea, due to Woodin, gives Σ 21 -well-orderings when applied to L[μ] or, more generally, Σ 21 (Hom) if applied to nice inner models, provided enough large cardinals exist in V. We announce a recent result of Woodin indicating how to transform this variation into a proof from large cardinals of the Ω-consistency of real-valued measurability of c together with the existence of Σ 21 -definable well-orderings of ℝ. It follows that if the Ω-conjecture is true, and large cardinals are granted, then this statement can always be forced.

However, we introduce a strengthening of real-valued measurability (real-valued hugeness), show its consistency, and prove that it contradicts the existence of third-order definable well-orderings of ℝ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. U. Abraham, S. Shelah. Forcing closed unbounded sets, The Journal of Symbolic Logic 48(3) (1983), 643–657 ([AbSh 146]).

    Article  MATH  MathSciNet  Google Scholar 

  2. U. Abraham, S. Shelah. A Δ 22 well-order of the reals and incompactness of L(Q MM), Annals of Pure and Applied Logic 59(1) (1993), 1–32 ([AbSh 403]).

    Article  MATH  MathSciNet  Google Scholar 

  3. U. Abraham, S. Shelah. Martin’s Axiom and Δ 21 well-ordering of the reals, Archive for Mathematical Logic 35(5–6) (1996), 287–298 ([AbSh 458]).

    Article  MATH  MathSciNet  Google Scholar 

  4. U. Abraham, S. Shelah. Coding with ladders a well ordering of the reals, The Journal of Symbolic Logic 67(2) (2002), 579–597 ([AbSh 485]).

    MATH  MathSciNet  Google Scholar 

  5. J. Bagaria, N. Castells, and P. Larson. An Ω-logic primer, this volume.

    Google Scholar 

  6. B. Balcar, T. Jech, and J. Zapletal. Semi-Cohen Boolean algebras, Annals of Pure and Applied Logic 87 (1997), 187–208.

    Article  MATH  MathSciNet  Google Scholar 

  7. S. Banach, K. Kuratowski. Sur une généralisation du problème de la mesure, Fundamenta Mathematicae 14 (1929), 127–131.

    MATH  Google Scholar 

  8. T. Bartoszyński, H. Judah. Set Theory. On the structure of the real line, A.K. Peters (1995).

    Google Scholar 

  9. J. Baumgartner. Iterated Forcing, in Surveys in Set Theory, A.D.R. Mathias, ed., Cambridge University Press (1983), 1–59.

    Google Scholar 

  10. J. Baumgartner. Applications of the Proper Forcing Axiom, in Handbook of Set-Theoretic Topology, K. Kunen and J.E. Vaughan, eds., Elsevier Science Publishers (1984), 913–959.

    Google Scholar 

  11. A. Caicedo. Simply definable well-orderings of the reals, Ph.D. Dissertation, Department of Mathematics, University of California, Berkeley (2003).

    Google Scholar 

  12. A. Caicedo. The strength of real-valued huge cardinals, in preparation.

    Google Scholar 

  13. J. Cummings. A model where GCH holds at successors but fails at limits, Transactions of the American Mathematical Society 329(1) (1992), 1–39.

    Article  MATH  MathSciNet  Google Scholar 

  14. J. Cummings. Iterated Forcing and Elementary Embeddings, to appear in Handbook of Set Theory, M. Foreman, A. Kanamori, and M. Magidor, eds., to appear.

    Google Scholar 

  15. A. Dodd. the Core Model, Cambridge University Press (1982).

    Google Scholar 

  16. Q. Feng, M. Magidor, and H. Woodin. Universally Baire sets of reals, in Set Theory of the continuum, H. Judah, W. Just, and H. Woodin, eds., Springer-Verlag (1992), 203–242.

    Google Scholar 

  17. D. fremlin. Consequences of Martin’s Axiom, Cambridge University Press (1984).

    Google Scholar 

  18. D. Fremlin. Measure Algebras, in Handbook of Boolean Algebras, volume 3, J. Monk and R. Bonnet, eds., North-Holland (1989), 877–980.

    Google Scholar 

  19. D. Fremlin. Real-valued measurable cardinals in Set Theory of the Reals, H. Judah, ed., Israel Mathematical Conference Proceedings 6, Bar-Ilan University (1993), 151–304.

    Google Scholar 

  20. S. Fuchino. Open Coloring Axiom and Forcing Axioms, preprint.

    Google Scholar 

  21. M. Gitik, S. Shelah. Forcing with ideals and simple forcing notions, Israel Journal of Mathematics 68 (1989), 129–160 ([GiSh 357]).

    MATH  MathSciNet  Google Scholar 

  22. M. Gitik, S. Shelah. More on Real-valued measurable cardinals and forcing with ideals, Israel Journal of Mathematics 124 (2001), 221–242 ([GiSh 582]).

    MATH  MathSciNet  Google Scholar 

  23. J. Hamkins. Lifting and extending measures by forcing: fragile measurability, Ph.D. Dissertation, Department of Mathematics, University of California, Berkeley (1994).

    Google Scholar 

  24. T. Jech. Set Theory, Academic Press (1978).

    Google Scholar 

  25. R. Jensen. Measurable cardinals and the GCH, in Axiomatic set theory (Proc. Sympos. Pure Math., Vol. XIII, Part II, Univ. California, Los Angeles, Calif., 1967), American Mathematical Society (1974), 175–178.

    Google Scholar 

  26. A. Kanamori. The Higher Infinite, Springer-Verlag (1994).

    Google Scholar 

  27. S. Koppelberg. General Theory of Boolean Algebras, volume 1 of Handbook of Boolean Algebras, J. Monk and R. Bonnet, eds., North-Holland (1989).

    Google Scholar 

  28. S. Koppelberg. Characterizations of Cohen algebras, in Papers on general topology and applications: Seventh Conference at the University of Wisconsin, S. Andima, R. Kopperman, P. Misra, M.E. Rudin, and A. Todd, eds., Annals of the New York Academy of Sciences 704 (1993), 222–237.

    Google Scholar 

  29. S. Koppelberg, S. Shelah. Subalgebras of Cohen algebras need not be Cohen, in Logic: From Foundations to Applications. European Logic Colloquium, W. Hodges, M. Hyland, C. Steinhorn, and J. Truss, eds., Oxford University Press (1996) ([KpSh 504]).

    Google Scholar 

  30. K. Kunen. Saturated ideals, The Journal of Symbolic Logic 43(1) (1978), 65–76.

    Article  MATH  MathSciNet  Google Scholar 

  31. K. Kunen. Set Theory. An introduction to independence proofs, Elsevier Science Publishers (1980).

    Google Scholar 

  32. K. Kunen. Random and Cohen reals, in Handbook of Set-Theoretic Topology, K. Kunen and J.E. Vaughan, eds., Elsevier Science Publishers (1984), 887–911.

    Google Scholar 

  33. P. Larson. The Stationary Tower: Notes on a Course by W. Hugh Woodin, American Mathematical Society (2004).

    Google Scholar 

  34. P. Larson. Forcing over models of determinacy, preprint. To appear in Handbook of Set Theory, M. Foreman, A. Kanamori, and M. Magidor, eds.

    Google Scholar 

  35. A. Levy. A hierarchy of formulas in set theory, Memoirs of the American Mathematical Society 57 (1965).

    Google Scholar 

  36. D. Martin, J. Steel. Iteration trees, Journal of the American Mathematical Society 7(1) (1994), 1–73.

    Article  MATH  MathSciNet  Google Scholar 

  37. J. Roitman. Adding a random or a Cohen real: topological consequences and the effect on Martin’s axiom, Fundamenta Mathematicae 103(1) (1979), 47–60.

    MATH  MathSciNet  Google Scholar 

  38. R. Solovay. Real-valued measurable cardinals, in Axiomatic set theory, Part I, American Mathematical Society (1971), 397–428.

    Google Scholar 

  39. J. Steel. The derived model theorem, preprint.

    Google Scholar 

  40. J. Steel. The core model iterability problem, Springer-Verlag (1996).

    Google Scholar 

  41. S. Todorčević. Remarks on chain conditions in products, Compositio Mathematica 55(3) (1985), 295–302.

    MathSciNet  Google Scholar 

  42. S. Todorčević. Trees and linearly ordered sets in Handbook of Set-Theoretic Topology, K. Kunen and J.E. Vaughan, eds., Elsevier Science Publishers (1984), 235–294.

    Google Scholar 

  43. S. Ulam. Zur Masstheorie in der allgemeinen Mengenlehre, Fundamenta Mathematicae 16 (1930), 140–150.

    MATH  Google Scholar 

  44. H. Woodin. The Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal, Walter de Gruyter (1999).

    Google Scholar 

  45. H. Woodin. The Continuum Hypothesis and the Ω-conjecture, slides of a talk given at the Fields Institute during the Thematic Program on Set Theory and Analysis, September–December 2002, A. Dow, A. Kechris, M. Laczkovich, C. Laflamme, J. Steprans, and S. Todorčević, organizers.

    Google Scholar 

  46. H. Woodin. Set Theory after Russell; the journey back to Eden, in One hundred years of Russell’s paradox, G. Link, ed., Walter de Gruyter (2004).

    Google Scholar 

  47. H. Woodin, A. Caicedo. Real-valued measurable cardinals and Σ 21 -well-orderings of the reals, preprint.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Caicedo, A.E. (2006). Real-valued Measurable Cardinals and Well-orderings of the Reals. In: Bagaria, J., Todorcevic, S. (eds) Set Theory. Trends in Mathematics. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7692-9_4

Download citation

Publish with us

Policies and ethics