Skip to main content

Dirichlet Forms and Degenerate Elliptic Operators

  • Chapter

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 168))

Abstract

It is shown that the theory of real symmetric second-order elliptic operators in divergence form on ℝd can be formulated in terms of a regular strongly local Dirichlet form irregardless of the order of degeneracy. The behavior of the corresponding evolution semigroup S t can be described in terms of a function (A, B) ↦ d(A; B) ∈ [0, ∞] over pairs of measurable subsets of ℝd. Then

$$ \left| {\left( {\varphi A,S_t \varphi B} \right)} \right| \leqslant e^{ - d(A;B)^2 (4t)^{ - 1} } ||\varphi A||2||\varphi B||2 $$

for all t > 0 and all ϕ AL 2(A), ϕ BL 2(B). Moreover S t L 2(A) ∈ L 2(A) for all t > 0 if and only if d(A;A c) = ∞ where A c denotes the complement of A.

This work was supported by an Australian Research Council (ARC) Discovery Grant DP 0451016.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.E. Andersson, On the representation of Dirichlet forms. Ann. Inst. Fourier 25 (1975), 11–25.

    MATH  MathSciNet  Google Scholar 

  2. P. Auscher, On necessary and sufficient conditions for L p-estimates of Riesz transforms associated to elliptic operators onn and related estimates. Research report, Preprint. Univ. de Paris-Sud, 2004. Memoirs Amer. Math. Soc., to appear.

    Google Scholar 

  3. M. Biroli and U. Mosco, Formes de Dirichlet et estimations structurelles dans les milieux discontinus. C. R. Acad. Sci. Paris Sér. I Math. 313 (1991), 593–598.

    MATH  MathSciNet  Google Scholar 

  4. M. Biroli and U. Mosco, A Saint-Venant type principle for Dirichlet forms on discontinuous media. Ann. Mat. Pura Appl. 169 (1995).

    Google Scholar 

  5. A. Braides, Γ-convergence for beginners, vol. 22 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford, 2002.

    Google Scholar 

  6. N. Bouleau and F. Hirsch, Dirichlet forms and analysis on Wiener space, vol. 14 of de Gruyter Studies in Mathematics. Walter de Gruyter & Co., Berlin, 1991.

    MATH  Google Scholar 

  7. J. Cheeger, M. Gromov, and M. Taylor, Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds. J. Differential Geom. 17 (1982), 15–53.

    MATH  MathSciNet  Google Scholar 

  8. G. Dal Maso, An introduction to Γ-convergence, vol. 8 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Boston Inc., Boston, MA, 1993.

    Google Scholar 

  9. E.B. Davies, Explicit constants for Gaussian upper bounds on heat kernels. Amer. J. Math. 109 (1987), 319–333.

    Article  MATH  MathSciNet  Google Scholar 

  10. E.B. Davies, Heat kernel bounds, conservation of probability and the Feller property. J. Anal. Math. 58 (1992), 99–119. Festschrift on the occasion of the 70th birthday of Shmuel Agmon.

    Article  MATH  MathSciNet  Google Scholar 

  11. I. Ekeland and R. Temam, Convex analysis and variational problems. North-Holland Publishing Co., Amsterdam, 1976.

    MATH  Google Scholar 

  12. A.F.M. Elst, D.W. Robinson, A. Sikora, and Y. Zhu, Second-order operators with degenerate coefficients. Research Report CASA 04-32, Eindhoven University of Technology, Eindhoven, The Netherlands, 2004.

    Google Scholar 

  13. A.F.M. Elst, D.W. Robinson, and Y. Zhu, Positivity and ellipticity. Proc. Amer. Math. Soc. 134 (2006), 707–714.

    Article  MATH  MathSciNet  Google Scholar 

  14. M. Fukushima, Y. Oshima, and M Takeda, Dirichlet forms and symmetric Markov processes, vol. 19 of de Gruyter Studies in Mathematics. Walter de Gruyter & Co., Berlin, 1994.

    MATH  Google Scholar 

  15. M.P. Gaffney, The conservation property of the heat equation on Riemannian manifolds. Comm. Pure Appl. Math. 12 (1959), 1–11.

    MATH  MathSciNet  Google Scholar 

  16. A. Grigor’yan, Estimates of heat kernels on Riemannian manifolds. In Spectral theory and geometry (Edinburgh, 1998), vol. 273 of London Math. Soc. Lecture Note Ser., 140–225. Cambridge Univ. Press, Cambridge, 1999.

    Google Scholar 

  17. M. Hino and A.J. Ramírez, Small-time Gaussian behavior of symmetric diffusion semigroups. Ann. Prob. 31 (2003), 254–1295.

    Google Scholar 

  18. D.S. Jerison and A. Sánchez-Calle, Estimates for the heat kernel for a sum of squares of vector fields. Ind. Univ. Math. J. 35 (1986), 835–854.

    Article  MATH  Google Scholar 

  19. D.S. Jerison and A. Sánchez-Calle, Subelliptic, second order differential operators. In Berenstein, C. A., ed., Complex analysis III, Lecture Notes in Mathematics 1277. Springer-Verlag, Berlin etc., 1987, 46–77.

    Google Scholar 

  20. J. Jost, Nonlinear Dirichlet forms. In New directions in Dirichlet forms, vol. 8 of AMS/IP Stud. Adv. Math., 1–47. Amer. Math. Soc., Providence, RI, 1998.

    Google Scholar 

  21. T. Kato, Perturbation theory for linear operators. Second edition, Grundlehren der mathematischen Wissenschaften 132. Springer-Verlag, Berlin etc., 1984.

    MATH  Google Scholar 

  22. Z.M. Ma and M. Röckner, Introduction to the theory of (non symmetric) Dirichlet Forms. Universitext. Springer-Verlag, Berlin etc., 1992.

    MATH  Google Scholar 

  23. U. Mosco, Composite media and asymptotic Dirichlet forms. J. Funct. Anal. 123 (1994), 368–421.

    Article  MATH  MathSciNet  Google Scholar 

  24. M. Reed and B. Simon, Methods of modern mathematical physics IV. Analysis of operators. Academic Press, New York etc., 1978.

    MATH  Google Scholar 

  25. J.-P. Roth, Formule de représentation et troncature des formes de Dirichlet surm. In Séminaire de Théorie du Potentiel de Paris, No. 2, Lect. Notes in Math. 563, 260–274. Springer Verlag, Berlin, 1976.

    Google Scholar 

  26. B. Schmuland, On the local property for positivity preserving coercive forms. In Z.M. Ma and M. Röckner, eds., Dirichlet forms and stochastic processes. Walter de Gruyter & Co., Berlin, 1995, 345–354. Papers from the International Conference held in Beijing, October 25–31, 1993, and the School on Dirichlet Forms, held in Beijing, October 18–24, 1993.

    Google Scholar 

  27. A. Sikora, Riesz transform, Gaussian bounds and the method of wave equation. Math. Z. 247 (2004), 643–662.

    Article  MATH  MathSciNet  Google Scholar 

  28. B. Simon, Ergodic semigroups of positivity preserving self-adjoint operators. J. Funct. Anal. 12 (1973), 335–339.

    Article  MATH  Google Scholar 

  29. B. Simon, Lower semicontinuity of positive quadratic forms. Proc. Roy. Soc. Edinburgh Sect. A 79 (1977), 267–273.

    MATH  MathSciNet  Google Scholar 

  30. B. Simon, A canonical decomposition for quadratic forms with applications to monotone convergence theorems. J. Funct. Anal. 28 (1978), 377–385.

    Article  MATH  MathSciNet  Google Scholar 

  31. K.-T. Sturm, Analysis on local Dirichlet spaces. II. Upper Gaussian estimates for the fundamental solutions of parabolic equations. Osaka J. Math. 32 (1995), 275–312.

    MATH  MathSciNet  Google Scholar 

  32. K.-T. Sturm, The geometric aspect of Dirichlet forms. In New directions in Dirichlet forms, vol. 8 of AMS/IP Stud. Adv. Math., 233–277. Amer. Math. Soc., Providence, RI, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Philippe Clément on the occasion of his retirement

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

ter Elst, A.F.M., Robinson, D.W., Sikora, A., Zhu, Y. (2006). Dirichlet Forms and Degenerate Elliptic Operators. In: Koelink, E., van Neerven, J., de Pagter, B., Sweers, G., Luger, A., Woracek, H. (eds) Partial Differential Equations and Functional Analysis. Operator Theory: Advances and Applications, vol 168. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7601-5_5

Download citation

Publish with us

Policies and ethics