Skip to main content

Kolmogorov Operators of Hamiltonian Systems Perturbed by Noise

  • Chapter
Partial Differential Equations and Functional Analysis

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 168))

  • 2025 Accesses

Abstract

We consider a second-order elliptic operator k arising from Hamiltonian systems with friction in ℝ2n perturbed by noise. An invariant measure for this operator is μ(dx, dy) = exp(−2H(x, y))dx dy, where H is the Hamiltonian. We study the realization K: H 2(ℝ2n, μ) ↦ L 2(ℝ2n, μ) of k in L 2(ℝ2n, μ), proving that it is m-dissipative and that it generates an analytic semigroup.

A Philippe avec nos amitiées sincères

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Bertoldi, S. Fornaro, Gradient estimates in parabolic problems with unbounded coefficients, Studia Math. 165 (2004), 221–254.

    Article  MATH  MathSciNet  Google Scholar 

  2. M. Bertoldi, L. Lorenzi, Analytic methods for Markov semigroups, CRC Press / Chapman & Hall (2006), to appear.

    Google Scholar 

  3. S. Cerrai, Second-order PDE’s in finite and infinite dimensions. A probabilistic approach, Lecture Notes in Mathematics 1762, Springer-Verlag, Berlin (2001).

    Google Scholar 

  4. G. Da Prato, A. Lunardi, Elliptic operators with unbounded drift coefficients and Neumann boundary condition, J. Diff. Eqns. 198 (2004), 35–52.

    Article  MATH  Google Scholar 

  5. M. Freidlin, Some remarks on the Smoluchowski-Kramers approximation, J. Statist. Phys. 117 (2004), 617–634.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Lunardi, Schauder theorems for elliptic and parabolic problems with unbounded coefficients inn, Studia Math. 128 (1998), 171–198.

    MATH  MathSciNet  Google Scholar 

  7. A. Lunardi, G. Metafune, D. Pallara, Dirichlet boundary conditions for elliptic operators with unbounded drift, Proc. Amer. Math. Soc. 133 (2005), 2625–2635.

    Article  MATH  MathSciNet  Google Scholar 

  8. G. Metafune, D. Pallara, M. Wacker, Feller Semigroups onn, Sem. Forum 65 (2002), 159–205.

    Article  MATH  MathSciNet  Google Scholar 

  9. G. Metafune, E. Priola, Some classes of non-analytic Markov semigroups, J. Math. Anal. Appl. 294 (2004), 596–613.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Da Prato, G., Lunardi, A. (2006). Kolmogorov Operators of Hamiltonian Systems Perturbed by Noise. In: Koelink, E., van Neerven, J., de Pagter, B., Sweers, G., Luger, A., Woracek, H. (eds) Partial Differential Equations and Functional Analysis. Operator Theory: Advances and Applications, vol 168. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7601-5_4

Download citation

Publish with us

Policies and ethics