Skip to main content

Numerical Approximation of PDEs and Clément’s Interpolation

  • Chapter

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 168))

Abstract

In this short paper, we present a formalism which specifies the notions of consistency and stability of finite element methods for the numerical approximation of nonlinear partial differential equations of elliptic and parabolic type. This formalism can be found in [4], [7], [10], and allows to establish a priori and a posteriori error estimates which can be used for the refinement of the mesh in adaptive finite element methods. In concrete cases, the Cléement’s interpolation technique [6] is very useful in order to establish local a posteriori error estimates. This paper uses some ideas of [10] and its main goal is to show in a very simple setting, the mathematical arguments which lead to the stability and convergence of Galerkin methods. The bibliography concerning this subject is very large and the references of this paper are no exhaustive character. In order to obtain a large bibliography on the a posteriori error estimates, we report the lecturer to Verfürth’s book and its bibliography [12].

In honor of Clément’s retirement

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Babuska, A.K. Aziz. Survey lectures on the mathematical foundations of the finite element method. Academic Press, New York and London (1972).

    Google Scholar 

  2. C. Bernardi. Optimal finite element interpolation on curved domains. SIAM J. Numer. Anal. 26, 1212–1240 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  3. C. Bernardi, V. Girault. A local regularization operator for triangular and quadrilateral finite elements. SIAM J. Numer. Anal., Vol.35, no 5, 1893–1916 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  4. G. Caloz, J. Rappaz. Numerical analysis for nonlinear and bifurcation problems. Handbook of Numerical Analysis, Vol. 5, P.G. Ciarlet and J.L. Lions ed., 487–637 (1997).

    Google Scholar 

  5. P.G. Ciarlet. Basic error estimates for elliptic problems. Handbook of numerical analysis, Vol.II, ed. P.G. Ciarlet and J.L. Lions, Elsevier, 17–351 (1991).

    Google Scholar 

  6. P. Clément. Approximation by finite element functions using local regularization. RAIRO Anal. Num. 2, 77–84 (1975).

    Google Scholar 

  7. M. Crouzeix, J. Rappaz. On numerical approximation in bifurcation theory. Masson, Paris (1990).

    Google Scholar 

  8. G. Kunert. An a posteriori residual error estimator for the finite element method on anisotropic tetrahedral meshes. Numer. Math. 86, 471–490 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Medina, M. Picasso, J. Rappaz. Error estimates and adaptive finite elements for nonlinear diffusion-convection problems. M3AS 6-5, 689–712 (1996).

    Google Scholar 

  10. J. Pousin, J. Rappaz. Consistency, stability, a priori and a posteriori errors for Petrov-Galerkin methods applied to nonlinear problems. Numerische Mathematik 69, 213–231 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  11. R. Scott, S. Zhang. Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. of Comp., Vol. 54, no 190, 483–493 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  12. R. Verfürth. A review of a posteriori error estimation and adaptive mesh — refinement techniques. Wiley-Teubner series. Advances in numerical mathematics (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Rappaz, J. (2006). Numerical Approximation of PDEs and Clément’s Interpolation. In: Koelink, E., van Neerven, J., de Pagter, B., Sweers, G., Luger, A., Woracek, H. (eds) Partial Differential Equations and Functional Analysis. Operator Theory: Advances and Applications, vol 168. Birkhäuser-Verlag. https://doi.org/10.1007/3-7643-7601-5_14

Download citation

Publish with us

Policies and ethics