Advertisement

A Gohberg-Heinig Type Inversion Formula Involving Hankel Operators

Chapter
Part of the Operator Theory: Advances and Applications book series (OT, volume 165)

Abstract

A Gohberg-Heinig type inversion formula is derived for operators I — K 2 K 1, where K 1 and K 2 are Hankel integral operators acting between vector-valued L 1-spaces over [0,∞]. The main result is first proved, by using linear algebra tools, for the case when the corresponding kernel functions have a finite dimensional stable exponential representation.

Keywords

Hankel operators Fredholm integral equations inversion formulas kernel functions with stable exponential representations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R.L. Ellis and I. Gohberg, Distribution of zeroes of orthogonal functions related to the Nehari problem, In: Operator Theory: Advances and Applications, 90, Birkhäuser Verlag, Basel, 1996, 244–263.Google Scholar
  2. [2]
    R.L. Ellis and I. Gohberg, Inversion formulas for infinite generalized Toeplitz matrices, Integral equations and Operator Theory 32 (1998), 29–64.MathSciNetCrossRefGoogle Scholar
  3. [3]
    R.L. Ellis and I. Gohberg, Orthogonal Systems and Convolution Operators, Operator Theory: Advances and Applications, 140, Birkhäuser Verlag, Basel, 2003.Google Scholar
  4. [4]
    I. Gohberg and G. Heinig, On matrix valued integral operators on a finite interval with matrix kernels that depend on the difference of arguments, Rev. Roumaine Math. Pures Appl. 20 (1975), 55–73, (in Russian).MathSciNetGoogle Scholar
  5. [5]
    I. Gohberg, M.A. Kaashoek and F. van Schagen, On inversion of convolution integral operators on a finite interval, In: Operator Theoretical Methods and Applications to Mathematical Physics. The Erhard Meister Memorial Volume, OT 147, Birkhäuser Verlag, Basel, 2004, 277–285.Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2005

Authors and Affiliations

  1. 1.Department of MathematicsNorth-West UniversityPotchefstroomSouth Africa
  2. 2.Afdeling Wiskunde Faculteit der Exacte WetenschappenVrije UniversiteitAmsterdamThe Netherlands

Personalised recommendations