Boundary Nevanlinna—Pick Interpolation Problems for Generalized Schur Functions

Part of the Operator Theory: Advances and Applications book series (OT, volume 165)


Three boundary multipoint Nevanlinna-Pick interpolation problems are formulated for generalized Schur functions. For each problem, the set of all solutions is parametrized in terms of a linear fractional transformation with a Schur class parameter.


Generalized Schur function boundary interpolation interpolation with inequalities missed interpolation values lost negative squares 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J.A. Ball, Interpolation problems of Pick-Nevanlinna and Loewner types for meromorphic matrix functions, Integral Equations Operator Theory 6 (1983), no. 6, 804–840.zbMATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    J.A. Ball, I. Gohberg, and L. Rodman, Interpolation of rational matrix functions, OT45, Birkhäuser Verlag, 1990.Google Scholar
  3. [3]
    J. Ball and J.W. Helton, Interpolation problems of Pick-Nevanlinna and Loewner types for meromorphic matrix-functions: parametrization of the set of all solutions, Integral Equations Operator Theory, 9 (1986), 155–203.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    R. Bhatia, Matrix analysis, (English. English summary) Graduate Texts in Mathematics, 169, Springer-Verlag, New York, 1997.Google Scholar
  5. [5]
    V. Bolotnikov, On Carathéodory-Fejer problem for generalized Schur functions, Integral Equations Operator Theory, 50 (2004), 9–41.zbMATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    V. Bolotnikov and H. Dym, On boundary interpolation for matrix Schur functions, Mem. Amer. Math. Soc., to appear.Google Scholar
  7. [7]
    P. Dewilde and H. Dym, Lossless inverse scattering, digital filters, and estimation theory, IEEE Trans. Inform. Theory, 30 (1984), no. 4, 644–662.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    H. Dym, J-Contractive Matrix Functions, Reproducing Kernel Spaces and Interpolation, CBMS Reg. Conf., Ser. in Math. vol 71, Amer. Math. Soc., Providence, RI, 1989.Google Scholar
  9. [9]
    D.R. Georgijević, Solvability condition for a boundary value interpolation problem of Loewner type, J. Anal. Math. 74 (1998), 213–234.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    L.B. Golinskii. A generalization of the matrix Nevanlinna-Pick problem, Izv. Akad. Nauk Armyan. SSR Ser. Mat. 18 (1983), 187–205. (Russian).zbMATHMathSciNetGoogle Scholar
  11. [11]
    A. Kheifets, The abstract interpolation problem and applications, in: Holomorphic spaces (Ed. D. Sarason, S. Axler, J. McCarthy), pages 351–379, Cambridge Univ. Press, Cambridge, 1998.Google Scholar
  12. [12]
    I.V. Kovalishina, Loewner problem in the sight of J-theory of analytic matrix functions. in: Analysis in infinite-dimensional spaces and operator theory, pp. 87–97 Naukova-Dumka, Kiev, 1983 (Edited by V.A. Marchenko).Google Scholar
  13. [13]
    I.V. Kovalishina, Carathéodory-Julia theorem for matrix-functions, Teoriya Funktsii, Funktsianal’nyi Analiz i Ikh Prilozheniya, 43 (1985), 70–82. English translation in: Journal of Soviet Mathematics, 48(2) (1990), 176–186.zbMATHGoogle Scholar
  14. [14]
    I.V. Kovalishina, A multiple boundary interpolation problem for contracting matrix-valued functions in the unit circle, Teoriya Funktsii, Funktsianal’nyi Analiz i Ikh Prilozheniya, 51 (1989), 38–55. English transl. in: Journal of Soviet Mathematics, 52(6) (1990), 3467–3481.zbMATHGoogle Scholar
  15. [15]
    M.G. Krein and H. Langer, Über die verallgemeinerten Resolventen und die charakteristische Funktion eines isometrischen Operators im Raume Πκ, Colloq. Math. Soc. János Bolyai 5 (1972), 353–399.MathSciNetGoogle Scholar
  16. [16]
    M.G. Krein and H. Langer, Über einige Fortsetzungsprobleme, die eng mit der Theorie hermitescher Operatoren im Raume Πk zusammenhängen. I. Einige Funktionenklassen und ihre Darstellungen Math. Nachr. 77 (1977), 187–236.MathSciNetzbMATHGoogle Scholar
  17. [17]
    D. Sarason, Angular derivatives via Hilbert space, Complex Variables Theory Appl., 10(1) (1988), 1–10.zbMATHMathSciNetGoogle Scholar
  18. [18]
    D. Sarason, Sub-Hardy Hilbert Spaces in the Unit Disk, Wiley, New York, 1994.Google Scholar
  19. [19]
    D. Sarason, Nevanlinna-Pick interpolation with boundary data, Integral Equations Operator Theory, 30 (1998), 231–250.zbMATHMathSciNetCrossRefGoogle Scholar
  20. [20]
    J.H. Shapiro, Composition operators and classical function theory, Springer-Verlag, New York, 1993.zbMATHGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2005

Authors and Affiliations

  1. 1.Department of MathematicsThe College of William and MaryWilliamsburgUSA
  2. 2.Department of MathematicsUniversity of Massachusetts LowellLowellUSA

Personalised recommendations