Advertisement

Boundary Value Problems

Chapter
  • 539 Downloads
Part of the Progress in Mathematical Physics book series (PMP, volume 41)

Keywords

Weak Solution Boltzmann Equation Kinetic Theory Mild Solution Maxwellian Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Arkeryd, On the strong L 1 trend to equilibrium for the Boltzmann equation, Studies in Appl. Math. 87, 283–288 (1992).zbMATHMathSciNetGoogle Scholar
  2. 2.
    L. Arkeryd and C. Cercignani, On the convergence of solutions of the Enskog equation to solutions of the Boltzmann Equation, Commun. in Partial Differential Equations 14, 1071–1089 (1989).zbMATHMathSciNetGoogle Scholar
  3. 3.
    L. Arkeryd and C. Cercignani, A global existence theorem for the initial boundary value problem for the Boltzmann equation when the boundaries are not isothermal, Arch. Rat. Mech. Anal. 125, 271–288 (1993).MathSciNetCrossRefGoogle Scholar
  4. 4.
    L. Arkeryd, C. Cercignani and R. Illner, Measure solutions of the steady Boltzmann equation in a slab, Commun. Math. Phys. 142, 285–296 (1991).zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    L. Arkeryd, A. Nouri, A compactness result related to the stationary Boltzmann equation in a slab, Ind. Journ. Math. 44 815–839 (1995).zbMATHMathSciNetGoogle Scholar
  6. 6.
    L. Arkeryd, A. Nouri, The stationary Boltzmann equation in the slab with given weighted mass for hard and soft forces, Ann. Sc. Norm. Sup. Pisa 27, 533–556 (1999).MathSciNetGoogle Scholar
  7. 7.
    L. Arkeryd, A. Nouri, L 1 solutions to the stationary Boltzmann equation in a slab, Ann.Fac.Sci.Toulouse 9, 375–413 (2000).zbMATHMathSciNetGoogle Scholar
  8. 8.
    L. Arkeryd, A. Nouri, On the Milne problem and the hydrodynamic limit for a steady Boltzmann equation model, Journ. Stat. Phys. 99, 993–1019 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    L. Arkeryd, A. Nouri, The stationary Boltzmann equation in R n with given indata, Ann. Sc. Norm. Sup. Pisa 31, 1–28 (2002).Google Scholar
  10. 10.
    L. Arkeryd, A. Nouri, An existence result for the stationary Boltzmann equation in a cylindrical geometry, Arkiv för Matematik 434, 29–50 (2005).MathSciNetCrossRefGoogle Scholar
  11. 11.
    L. Arkeryd, A. Nouri, The stationary nonlinear Boltzmann equation in a Couette setting: multiple, isolated L q-solutions and positivity, Journ. Stat. Phys. 118, 849–881 (2005).zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    R. Beals and V. Protopopescu, Abstract time-dependent transport equations, J. Math. Anal. Appl. 121, 370–405 (1987).zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    L. Boltzmann, Über die Aufstellung und Integration der Gleichungen, welche die Molekularbewegungen in Gasen bestimmen, Sitzungsberichte der Akademie der Wissenschaften Wien 74, 503–552 (1876).Google Scholar
  14. 14.
    M. Cannone and C. Cercignani, A trace theorem in kinetic theory, Appl. Math. Lett. 4, 63–67 (1991).zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    C. Cercignani, The Boltzmann Equation and its Applications, Springer, New York (1988).zbMATHGoogle Scholar
  16. 16.
    C. Cercignani, Mathematical Methods in Kinetic Theory, Plenum Press, New York (1969; revised edition 1990).zbMATHGoogle Scholar
  17. 17.
    C. Cercignani, Boundary value problems in linearized kinetic theory, in Transport Theory, R. Bellman, G. Birkhoff and I. Abu-Shumays, eds., 249–268, AMS, Providence, R.I., (1969).Google Scholar
  18. 18.
    C. Cercignani, Scattering kernels for gas-surface interactions, Transport Theory and Stat. Phys. 2, 27–53 (1972).MathSciNetGoogle Scholar
  19. 19.
    C. Cercignani, Equilibrium states and trend to equilibrium in a gas according to the Boltzmann equation, Rend. Mat. Appl. 10, 77–95 (1990).zbMATHMathSciNetGoogle Scholar
  20. 20.
    C. Cercignani, On the initial-boundary value problem for the Boltzmann equation, Arch. Rational Mech. Anal. 116, 307–315 (1992).MathSciNetCrossRefGoogle Scholar
  21. 21.
    C. Cercignani, Stokes paradox in kinetic theory, Phys. Fluids 11, 303 (1967).MathSciNetCrossRefGoogle Scholar
  22. 22.
    C. Cercignani, R. Illner, and M. Pulvirenti, The Mathematical Theory of Dilute Gases, Springer-Verlag, New York (1994).zbMATHGoogle Scholar
  23. 23.
    C. Cercignani and M. Lampis, Kinetic models for gas-surface interactions, Transport Theory and Stat. Phys. 1, 101–114 (1971).zbMATHMathSciNetGoogle Scholar
  24. 24.
    J.-S. Darrozès and J.-P. Guiraud, Généralisation formelle du théorème H en présence de parois. Applications, C.R.A.S. (Paris) A262, 1368–1371.Google Scholar
  25. 25.
    L. Desvillettes, Convergence to equilibrium in large time for Boltzmann and BGK equations, Arch. Rat. Mech. Analysis 110, 73–91 (1990).zbMATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    R. DiPerna, P. L. Lions, On the Cauchy problem for Boltzmann equations, Ann. of Math. 130, 321–366 (1989).zbMATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    R. Di Perna and P. L. Lions, Global solutions of Boltzmann’s equation and the entropy inequality, Arch. Rational Mech. Anal. 114, 47–55 (1991).zbMATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    J. P. Guiraud, An H theorem for a gas of rigid spheres in a bounded domain, in Théories cinétiques classiques et rélativistes, G. Pichon, Ed., 29–58, CNRS, Paris (1975).Google Scholar
  29. 29.
    K. Hamdache, Initial boundary value problems for Boltzmann equation. Global existence of weak solutions., Arch. Rat. Mech. Analysis 119, 309–353 (1992).zbMATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    S. Kawashima, Global solutions to the initial-boundary value problems for the discrete Boltzmann equation, Nonlinear Analysis, Methods and Applications 17, 577–597 (1991).zbMATHMathSciNetCrossRefGoogle Scholar
  31. 31.
    I. Kuščer, Phenomenological aspects of gas-surface interaction, in Fundamental Problems in Statistical Mechanics IV, E.G.D. Cohen and W. Fiszdon, Eds., 441–467, Ossolineum, Warsaw (1978).Google Scholar
  32. 32.
    I. Kuščer, Reciprocity in scattering of gas molecules by surfaces, Surface Science 25, 225–237 (1971).CrossRefGoogle Scholar
  33. 33.
    P. L. Lions, Compactness in Boltzmann’s equation via Fourier integral operators and applications. I., J. Math. Kyoto Univ. 34 391–427 (1994).zbMATHMathSciNetGoogle Scholar
  34. 34.
    N. B. Maslova, The solvability of stationary problems for Boltzmann’s equation at large Knudsen numbers, U.S.S.R. Comput. Maths. Math. Phys., 17, 194–204 (1978).zbMATHCrossRefGoogle Scholar
  35. 35.
    N. B. Maslova, Existence and uniqueness theorems for the Boltzmann equation, Chapter 11 of Dynamical Systems II, Ya. G. Sinai, ed., Springer, Berlin (1982).Google Scholar
  36. 36.
    J.C. Maxwell, On stresses in rarified gases arising from inequalities of temperature, Phil. Trans. Royal Soc. 170, 231–256, Appendix (1879).zbMATHGoogle Scholar
  37. 37.
    Y. Shizuta and K. Asano, Global solutions of the Boltzmann equation in a bounded convex domain, Proc. Japan Acad. 53A, 3–5 (1977).MathSciNetGoogle Scholar
  38. 38.
    S. Ukai, Solutions of the Boltzmann equation, in Pattern and Waves — Qualitative Analysis of Nonlinear Differential Equations, 37–96 (1986).Google Scholar
  39. 39.
    S. Ukai, The transport equation (in Japanese), Sangyo Toshio, Tokyo (1976).Google Scholar
  40. 40.
    S. Ukai and K. Asano, On the initial boundary value problem of the linearized Boltzmann equation in an exterior domain, Proc. Japan Acad. 56, 12–17 (1980).zbMATHMathSciNetCrossRefGoogle Scholar
  41. 41.
    S. Ukai and K. Asano, Steady solutions of the Boltzmann for a gas flow past an obstacle. I. Existence, Arch. Rational Mech. Anal. 84, 249–291 (1983).zbMATHMathSciNetCrossRefGoogle Scholar
  42. 42.
    S. Ukai and K. Asano, On the existence and stability of stationary solutions of the Boltzmann equation for a gas flow past an obstacle, Research Notes in Mathematics 60, 350–364 (1982).zbMATHMathSciNetGoogle Scholar
  43. 43.
    S. Ukai and K. Asano, Steady solutions of the Boltzmann equation for a gas flow past an obstacle. II. Stability, Publ. RIMS, Kyoto Univ. 22, 1035–1062 (1986).zbMATHMathSciNetCrossRefGoogle Scholar
  44. 44.
    J. Voigt, Functional analytic treatment of the initial boundary value problem for collisionless gases, Habilitationsschrift, Univ. München (1980).Google Scholar

Copyright information

© Birkhäuser Verlag 2006

Personalised recommendations