Advertisement

Perturbations of Equilibria

Chapter
  • 530 Downloads
Part of the Progress in Mathematical Physics book series (PMP, volume 41)

Keywords

Cauchy Problem Boltzmann Equation Compact Operator Null Space Essential Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Arsen’ev, The Cauchy problem for the linearized Boltzmann equation, USSR Comput. Math. and Math. Phys. 5, 110–136 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    R. S. Ellis and M. A. Pinsky, The first and second fluid approximations to the linearized Boltzmann equation, J. Math. Pures et Appl. 54, 125–156 (1972).MathSciNetGoogle Scholar
  3. 3.
    H. Grad, Asymptotic equivalence of the Navier-Stokes and nonlinear Boltzmann equations, Proc. Symp. Appl. Math. 17, R. Finn Ed., 154–183, AMS, Providence (1965).Google Scholar
  4. 4.
    T. Kato, Perturbation Theory of Linear Operators, Springer, New York (1966).Google Scholar
  5. 5.
    N. B. Maslova and A. N. Firsov, Solution of the Cauchy problem for the Boltzmann equation (in Russian), Vestnik Leningrad Univ. 19, 83–85 (1975).zbMATHMathSciNetGoogle Scholar
  6. 6.
    J. A. McLennan, Convergence of the Chapman-Enskog expansion for the linearized Boltzmann equation, Phys. Fluids 8, 1580–1584 (1965).MathSciNetCrossRefGoogle Scholar
  7. 7.
    T. Nishida and K. Imai, Global solutions to the initial value problem for the non-linear Boltzmann equation, Publ. R.I.M.S. Kyoto Univ. 12, 229–239 (1976).zbMATHMathSciNetGoogle Scholar
  8. 8.
    E. C. Titchmarsh, Introduction to the Theory of Fourier Integral, Oxford University Press (1948).Google Scholar
  9. 9.
    S. Ukai, On the existence of global solutions of a mixed problem for the nonlinear Boltzmann equation, Proc. Japan Acad. 50, 179–184 (1974).zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    S. Ukai, Les solutions globales de l’équation de Boltzmann dans l’espace tout entier et dans le demi-espace, C. R. Acad. Sci., Paris, 282A, 317–320 (1976).MathSciNetGoogle Scholar
  11. 11.
    S. Ukai and Asano, On the Cauchy problem of the Boltzmann equation with a soft potential, Publ. R.I.M.S. Kyoto Univ. 18, 477–519 (1982).zbMATHMathSciNetGoogle Scholar
  12. 12.
    S. Ukai, Solutions of the Boltzmann equation in Patterns and Waves — Qualitative Analysis of Nonlinear Differential Equations, Studies in Mathematics and its Applications 18, 37–96 (1986).zbMATHMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag 2006

Personalised recommendations