Advertisement

Validity and Existence

Chapter
  • 529 Downloads
Part of the Progress in Mathematical Physics book series (PMP, volume 41)

Keywords

Boltzmann Equation Series Solution Mild Solution Grad Limit Collision Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Cercignani, Global Weak Solutions of the Boltzmann Equation, Jour. Stat. Phys. 118, 333–342 (2005).zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    C. Cercignani, R. Illner, and M. Pulvirenti, The Mathematical Theory of Dilute Gases, Springer-Verlag, New York (1994).Google Scholar
  3. 3.
    R. DiPerna, and P.L. Lions, On the Cauchy problem for Boltzmann equations: Global existence and weak stability, Ann. of Math. 130, 321–366 (1989).zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    R. Illner, M. Pulvirenti, Global validity of the Boltzmann equation for a two-dimensional rare gas in vacuum. Commun. Math. Phys. 105, 189–203 (1986).zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    R. Illner, M. Pulvirenti, Global validity of the Boltzmann equation for two and three-dimensional rare gases in vacuum: Erratum and improved result., Commun. Math. Phys. 121, 143–146 (1989).zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    O. Lanford III, in Time evolution of large classical systems. Moser, E. J. (ed.). Lecture Notes in Physics 38, 1–111. Springer Verlag 1975.Google Scholar
  7. 7.
    H. Spohn, Large Scale Dynamics of Interacting Particles, Springer-Verlag 1991.Google Scholar

Copyright information

© Birkhäuser Verlag 2006

Personalised recommendations