Skip to main content

Frames and Generalized Shift-Invariant Systems

  • Conference paper

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 164))

Abstract

With motivation from the theory of Hilbert-Schmidt operators we review recent topics concerning frames in L2(ℝ) and their duals. Frames are generalizations of orthonormal bases in Hilbert spaces. As for an orthonormal basis, a frame allows each element in the underlying Hilbert space to be written as an unconditionally convergent infinite linear combination of the frame elements; however, in contrast to the situation for a basis, the coefficients might not be unique. We present the basic facts from frame theory and the motivation for the fact that most recent research concentrates on tight frames or dual frame pairs rather than general frames and their canonical dual. The corresponding results for Gabor frames and wavelet frames are discussed in detail.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Benedetto and D. Walnut, Gabor frames for L2 and related spaces, in Wavelets: mathematics and applications, Editors: J. Benedetto and M. Frazier, CRC Press, Boca Raton, 1993, 97–162.

    Google Scholar 

  2. M. Bownik and E. Weber, Affine frames, GMRA’s and the canonical dual, Studia Math. 159 no.3 (2003), 453–479.

    MathSciNet  Google Scholar 

  3. H. Bölcskei and A.J.E.M. Janssen, Gabor frames, unimodularity, and window decay, J. Fourier Anal. Appl. 6 no. 3 (2000), 255–276.

    MathSciNet  Google Scholar 

  4. O. Christensen, Frames, bases, and discrete Gabor/wavelet expansions, Bull. Amer. Math. Soc. 38 no. 3 (2001), 273–291.

    Article  MATH  MathSciNet  Google Scholar 

  5. O. Christensen, An Introduction to Frames and Riesz Bases, Birkhäuser, Boston, 2003.

    Google Scholar 

  6. O. Christensen and Y. C. Eldar, Generalized shift-invariant systems and frames for subspaces, J. Fourier Anal. Appl. 11 no. 3 (2005), 299–313.

    Article  MathSciNet  Google Scholar 

  7. O. Christensen, H. O. Kim, R. Y. Kim and J. K. Lim, Riesz sequences of translates and oblique duals with support on [0, 1], Preprint 2005.

    Google Scholar 

  8. C. Chui, W. He and J. Stöckler, Compactly supported tight and sibling frames with maximum vanishing moments, Appl. Comp. Harm. Anal. 13 (2002), 224–262.

    Google Scholar 

  9. I. Daubechies, The wavelet transform, time-frequency localization and signal analysis, IEEE Trans. Inform. Theory 36 (1990), 961–1005.

    Article  MATH  MathSciNet  Google Scholar 

  10. I. Daubechies and B. Han, The canonical dual of a wavelet frame, Appl. Comp. Harm. Anal. 12 no.3 (2002), 269–285.

    MathSciNet  Google Scholar 

  11. I. Daubechies, A. Grossmann and Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys. 27 (1986), 1271–1283.

    Article  MathSciNet  Google Scholar 

  12. I. Daubechies, B. Han, A. Ron and Z. Shen, Framelets: MRA-based constructions of wavelet frames, Appl. Comp. Harm. Anal. 14 no. 1 (2003), 1–46.

    MathSciNet  Google Scholar 

  13. H.G. Feichtinger and T Strohmer, Gabor Analysis and Algorithms: Theory and Applications, Birkhäuser, Boston, 1998.

    Google Scholar 

  14. H.G. Feichtinger and T. Strohmer, Advances in Gabor Analysis, Birkhäuser, Boston, 2002.

    Google Scholar 

  15. M. Frazier, G. Garrigos, K. Wang and G. Weiss, A characterization of functions that generate wavelet and related expansion, J. Fourier Anal. Appl. 3 (1997), 883–906.

    MathSciNet  Google Scholar 

  16. D. Gabor, Theory of communications, J. IEE (London) 93 no. 3 (1946), 429–457.

    Google Scholar 

  17. K. Gröchenig, Foundations of Time-Frequency Analysis, Birkhäuser, 2000.

    Google Scholar 

  18. E. Hernandez, D. Labate and G. Weiss, A unified characterization of reproducing systems generated by a finite family II, J. Geom. Anal. 12 no. 4 (2002), 615–662.

    MathSciNet  Google Scholar 

  19. S. Li, On general frame decompositions, Numer. Funct. Anal. and Optimiz. 16 no. 9 & 10 (1995), 1181–1191.

    MATH  Google Scholar 

  20. A. Ron and Z. Shen, Generalized shift-invariant systems, Const. Approx. 22 no.1 (2005), 1–45.

    MathSciNet  Google Scholar 

  21. A. Ron and Z. Shen, Compactly supported tight affine spline frames in L2(Rd), Math. Comp. 67 (1998), 191–207.

    Article  MathSciNet  Google Scholar 

  22. J. Wexler and S. Raz, Discrete Gabor expansions, Signal Processing 21 (1990), 207–220.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Christensen, O. (2006). Frames and Generalized Shift-Invariant Systems. In: Boggiatto, P., Rodino, L., Toft, J., Wong, M.W. (eds) Pseudo-Differential Operators and Related Topics. Operator Theory: Advances and Applications, vol 164. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7514-0_14

Download citation

Publish with us

Policies and ethics